Previous laser-generated focused ultrasound (LGFU) systems have been operated with >15 MHz frequency, allowing for high spatial precision (<100 μm). However, they have been limited only to proximal biomedical applications ex vivo with treatment depths smaller than 10 mm from the lens surface. Although the low-megahertz frequency operation has the advantage of a longer range of therapy, this requires a proper photoacoustic lens made of a nanocomposite coating over a spherically curved substrate whose transmission layer is physically designed for frequency-tuned outputs. This demands a fabrication method that can provide such a nanocomposite structure. We demonstrate photoacoustic lenses operated in an unexplored frequency range of 1–10 MHz, which can simultaneously produce high-amplitude pressure outputs sufficient for pulsed acoustic cavitation. We physically design a spatially elongated photoacoustic output and then fabricate a transmitter by controlling the density of light-absorbing nanoscale elements in a solution form and by using a replica mold to shape the lens curvature. Our approach is validated by fabricating and characterizing planar transmitters and then applied to focal configurations. This offers various possibilities for LGFU-based treatments (e.g., pulsed cavitational therapy such as histotripsy) over the low-megahertz frequency range, which has not been realized by conventional LGFU systems.

1.
H. W.
Baac
,
J. G.
Ok
,
A.
Maxwell
,
K.-T.
Lee
,
Y.-C.
Chen
,
A. J.
Hart
,
Z.
Xu
,
E.
Yoon
, and
L. J.
Guo
,
Sci. Rep.
2
,
989
(
2012
).
2.
H. W.
Baac
,
J.
Frampton
,
J. G.
Ok
,
S.
Takayama
, and
L. J.
Guo
,
J. Biophotonics
6
,
905
(
2013
).
3.
H. W.
Baac
,
T.
Lee
, and
L. J.
Guo
,
Biomed. Opt. Express
4
(
8
),
1442
(
2013
).
4.
T.
Lee
,
H. W.
Baac
,
J. G.
Ok
,
H. S.
Youn
, and
L. J.
Guo
,
Phys. Rev. Appl.
2
,
024007
(
2014
).
5.
T.
Lee
,
J. G.
Ok
,
L. J.
Guo
, and
H. W.
Baac
,
Appl. Phys. Lett.
108
,
104102
(
2016
).
6.
J.
Di
,
J.
Kim
,
Q.
Hu
,
X.
Jiang
, and
Z.
Gu
,
J. Controlled Release
220
,
592
(
2015
).
7.
T.
Lee
,
W.
Luo
,
Q.
Li
,
H.
Demirci
, and
L. J.
Guo
,
Small
13
,
1701555
(
2017
).
8.
E. J.
Alles
,
S.
Noimark
,
E.
Zhang
,
P. C.
Beard
, and
A. E.
Desjardins
,
Biomed. Opt. Express
7
,
3696
(
2016
).
9.
T.
Lee
,
H. W.
Baac
,
Q.
Li
, and
L. J.
Guo
,
Adv. Opt. Mater.
6
,
1800491
(
2018
).
10.
H. W.
Baac
,
J. G.
Ok
,
H. J.
Park
,
T.
Ling
,
S.-L.
Chen
,
A. J.
Hart
, and
L. J.
Guo
,
Appl. Phys. Lett.
97
,
234104
(
2010
).
11.
H. W.
Baac
,
J. G.
Ok
,
T.
Lee
, and
L. J.
Guo
,
Nanoscale
7
,
14460
(
2015
).
12.
W.-Y.
Chang
,
W.
Huang
,
J.
Kim
,
S.
Li
, and
X.
Jiang
,
Appl. Phys. Lett.
107
,
161903
(
2015
).
13.
B.-Y.
Hsieh
,
J.
Kim
,
J.
Zhu
,
S.
Li
,
X.
Zhang
, and
X.
Jiang
,
Appl. Phys. Lett.
106
,
021902
(
2015
).
14.
Z.
Chen
,
Y. Wu, Y.
Yang
,
J.
Li
,
B.
Xie
,
X.
Li
,
S.
Lei
,
J. O.
Yang
,
X.
Yang
,
Q.
Zhou
, and
B.
Zhu
,
Nano Energy
46
,
314
(
2018
).
15.
R. E.
Apfel
and
C. K.
Holland
,
Ultrasound Med. Biol.
17
,
179
(
1991
).
16.
A. D.
Maxwell
,
C. A.
Cain
,
A. P.
Duryea
,
L.
Yuan
,
H. S.
Gurm
, and
Z.
Xu
,
Ultrasound Med. Biol.
35
,
1982
(
2009
).
17.
B.
Larrat
,
M.
Pernot
,
J.-F.
Aubry
,
E.
Dervishi
,
R.
Sinkus
,
D.
Seilhean
,
Y.
Marie
,
A.-L.
Boch
,
M.
Fink
, and
M.
Tanter
,
Phys. Med. Biol.
55
,
365
(
2010
).
18.
M.
Yiannakou
,
G.
Menikou
,
C.
Yiallouras
,
C.
Ioannides
, and
C.
Damianou
,
Int. J. Med. Rob. Comput. Assisted Surg.
13
,
e1804
(
2017
).
19.
J. E.
Parsons
,
C. A.
Cain
, and
J. B.
Fowlkes
,
J. Acoust. Soc. Am.
119
,
1432
(
2006
).
20.
M. F.
Hamilton
and
D. T.
Blackstock
,
Nonlinear Acoustics
(
Acoustical Society of America
,
Melville
,
2008
).
21.
G. J.
Diebold
,
T.
Sun
, and
M. I.
Khan
,
Phys. Rev. Lett.
67
,
3384
(
1991
).
22.
P.
Smirnov
and
K.
Hynynen
,
Phys. Med. Biol.
62
,
6108
(
2017
).
You do not currently have access to this content.