In 4H silicon carbide (SiC) metal-oxide-semiconductor field-effect transistors (MOSFETs), slow drain current transients and strong sweep hysteresis govern the subthreshold regime, in particular, after negative gate stress. Although these are clearly charge carrier trapping and emission phenomena, a physical model describing the effect to a full extent is missing. In this paper, we investigate a-face n-channel 4H-SiC trench MOSFETs and record drain current transients over seven decades of time for gate voltages below and above threshold. We find clear evidence that the transients result from electron capture rather than from hole emission. Thereby, the time constant for electron capture into interface or near-interfacial defects is broadly distributed and is well characterized by a lognormal distribution. Based on the findings, we propose a physical model that consistently describes the time-dependent measured data in the full gate voltage range. The resulting trap density for the investigated MOSFETs equals 4.2 × 1012 cm–2 with a median electrical capture cross section of 2.5×1019 cm2. The distribution of capture time constants has a width of 1.6 orders of magnitude.

1.
R.
Siemieniec
,
D.
Peters
,
R.
Esteve
,
W.
Bergner
,
D.
Kück
,
T.
Aichinger
,
T.
Basler
, and
B.
Zippelius
, “
A SiC trench MOSFET concept offering improved channel mobility and high reliability
,” in
2017 19th European Conference on Power Electronics and Applications (EPE'17 ECCE Europe)
(IEEE,
2017
), p.
P
1
.
2.
D.
Peters
,
A.
Schöner
,
P.
Friedrichs
, and
D.
Stephani
, “
4H-SiC power MOSFET blocking 1200V with a gate technology compatible with industrial applications
,”
Mater. Sci. Forum
433–436
,
769
772
(
2003
).
3.
H.
Yano
,
T.
Hirao
,
T.
Kimoto
,
H.
Matsunami
,
K.
Asano
, and
Y.
Sugawara
, “
High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112¯0) face
,”
IEEE Electron Device Lett.
20
,
611
613
(
1999
).
4.
T.
Kimoto
, “
Material science and device physics in SiC technology for high-voltage power devices
,”
Jpn. J. Appl. Phys., Part 1
54
,
040103
(
2015
).
5.
D.
Peters
,
R.
Siemieniec
,
T.
Aichinger
,
T.
Basler
,
R.
Esteve
,
W.
Bergner
, and
D.
Kueck
, “
Performance and ruggedness of 1200 V SiC-Trench-MOSFET
,” in
2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)
(IEEE,
2017
), pp.
239
242
.
6.
G.
Rescher
,
G.
Pobegen
,
T.
Aichinger
, and
T.
Grasser
, “
On the subthreshold drain current sweep hysteresis of 4H-SiC nMOSFETs
,” in
2016 IEEE International Electron Devices Meeting (IEDM)
(IEEE,
2016
), pp.
10
18
.
7.
A. J.
Lelis
,
D.
Habersat
,
R.
Green
,
A.
Ogunniyi
,
M.
Gurfinkel
,
J.
Suehle
, and
N.
Goldsman
, “
Time dependence of bias-stress-induced SiC MOSFET threshold-voltage instability measurements
,”
IEEE Trans. Electron Devices
55
,
1835
1840
(
2008
).
8.
A. J.
Lelis
,
R.
Green
,
D. B.
Habersat
, and
M.
El
, “
Basic mechanisms of threshold-voltage instability and implications for reliability testing of SiC MOSFETs
,”
IEEE Trans. Electron Devices
62
,
316
323
(
2015
).
9.
T.
Aichinger
,
G.
Rescher
, and
G.
Pobegen
, “
Threshold voltage peculiarities and bias temperature instabilities of SiC MOSFETs
,”
Microelectron. Reliab.
80
,
68
78
(
2018
).
10.
K.
Puschkarsky
,
H.
Reisinger
,
T.
Aichinger
,
W.
Gustin
, and
T.
Grasser
, “
Understanding BTI in SiC MOSFETs and its impact on circuit operation
,”
IEEE Trans. Device Mater. Reliab.
18
(
2
),
144
153
(
2018
).
11.
G.
Rescher
,
G.
Pobegen
,
T.
Aichinger
, and
T.
Grasser
, “
Preconditioned BTI on 4H-SiC: Proposal for a nearly delay time-independent measurement technique
,”
IEEE Trans. Electron Devices
65
,
1419
1426
(
2018
).
12.
N.
Saks
,
A.
Agarwal
,
S.
Ryu
, and
J.
Palmour
, “
Low-dose aluminum and boron implants in 4H and 6H silicon carbide
,”
J. Appl. Phys.
90
,
2796
2805
(
2001
).
13.
G.
Chung
,
C.
Tin
,
J.
Williams
,
K.
McDonald
,
M. D.
Ventra
,
S.
Pantelides
,
L.
Feldman
, and
R.
Weller
, “
Effect of nitric oxide annealing on the interface trap densities near the band edges in the 4H polytype of silicon carbide
,”
Appl. Phys. Lett.
76
,
1713
1715
(
2000
).
14.
M.
Hauck
,
J.
Lehmeyer
,
G.
Pobegen
,
H. B.
Weber
, and
M.
Krieger
, “
An adapted method for analyzing 4H silicon carbide metal-oxide-semiconductor field-effect transistors
,”
Commun. Phys.
2
,
5
(
2019
).
15.
W.
Shockley
and
W.
Read
, Jr.
, “
Statistics of the recombinations of holes and electrons
,”
Phys. Rev.
87
,
835
(
1952
).
16.
R. N.
Hall
, “
Electron-hole recombination in germanium
,”
Phys. Rev.
87
,
387
(
1952
).
17.
S.
Potbhare
,
N.
Goldsman
,
G.
Pennington
,
A.
Lelis
, and
J. M.
McGarrity
, “
Numerical and experimental characterization of 4H-silicon carbide lateral metal-oxide-semiconductor field-effect transistor
,”
J. Appl. Phys.
100
,
044515
(
2006
).
18.
M.
Kirton
and
M.
Uren
, “
Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise
,”
Adv. Phys.
38
,
367
468
(
1989
).
19.
W.
Goes
,
F.
Schanovsky
,
P.
Hehenberger
,
P.-J.
Wagner
, and
T.
Grasser
, “
Charge trapping and the negative bias temperature instability
,”
ECS Trans.
33
,
565
589
(
2010
).
20.
E.
Arnold
, “
Charge-sheet model for silicon carbide inversion layers
,”
IEEE Trans. Electron Devices
46
,
497
503
(
1999
).
21.
E.
Bano
,
T.
Ouisse
,
L. D.
Cioccio
, and
S.
Karmann
, “
Surface potential fluctuations in metal-oxide-semiconductor capacitors fabricated on different silicon carbide polytypes
,”
Appl. Phys. Lett.
65
,
2723
2724
(
1994
).
22.
S.
Potbhare
,
N.
Goldsman
,
A.
Akturk
,
M.
Gurfinkel
,
A.
Lelis
, and
J. S.
Suehle
, “
Energy-and time-dependent dynamics of trap occupation in 4H-SiC MOSFETs
,”
IEEE Trans. Electron Devices
55
,
2061
2070
(
2008
).
23.
G.
Gruber
,
J.
Cottom
,
R.
Meszaros
,
M.
Koch
,
G.
Pobegen
,
T.
Aichinger
,
D.
Peters
, and
P.
Hadley
, “
Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2 interface
,”
J. Appl. Phys.
123
,
161514
(
2018
).
24.
T.
Umeda
,
K.
Esaki
,
R.
Kosugi
,
K.
Fukuda
,
N.
Morishita
,
T.
Ohshima
, and
J.
Isoya
, “
Electrically detected ESR study of interface defects in 4H-SiC metal-oxide-semiconductor field effect transistor
,”
Mater. Sci. Forum
679–680
,
370
373
(
2011
).
25.
A.
Basile
,
J.
Rozen
,
J.
Williams
,
L. C.
Feldman
, and
P.
Mooney
, “
Capacitance-voltage and deep-level-transient spectroscopy characterization of defects near SiO2/SiC interfaces
,”
J. Appl. Phys.
109
,
064514
(
2011
).
26.
P.
Pande
,
S.
Dimitrijev
,
D.
Haasmann
,
H. A.
Moghadam
,
P.
Tanner
, and
J.
Han
, “
Direct measurement of active near-interface traps in the strong-accumulation region of 4H-SiC MOS capacitors
,”
IEEE J. Electron Devices Soc.
6
,
468
474
(
2018
).
27.
M.
Hauck
,
J.
Weisse
,
J.
Lehmeyer
,
G.
Pobegen
,
H. B.
Weber
, and
M.
Krieger
, “
Quantitative investigation of near interface traps in 4H-SiC MOSFETs via drain current deep level transient spectroscopy
,”
Mater. Sci. Forum
897
,
111
114
(
2017
).
28.
H. A.
Moghadam
,
S.
Dimitrijev
,
J.
Han
,
D.
Haasmann
, and
A.
Aminbeidokhti
, “
Transient-current method for measurement of active near-interface oxide traps in 4H-SiC MOS capacitors and MOSFETs
,”
IEEE Trans. Electron Devices
62
,
2670
2674
(
2015
).
29.
T.
Hatakeyama
,
Y.
Kiuchi
,
M.
Sometani
,
S.
Harada
,
D.
Okamoto
,
H.
Yano
,
Y.
Yonezawa
, and
H.
Okumura
, “
Characterization of traps at nitrided SiO2/SiC interfaces near the conduction band edge by using Hall effect measurements
,”
Appl. Phys. Express
10
,
046601
(
2017
).
You do not currently have access to this content.