For accelerating the development of deep-ultraviolet light-emitting diodes based on high AlN mole fraction (x) AlxGa1-xN for sterilization, disinfection, and skin therapy applications, in-plane optical polarization and dynamic properties of the near-band edge (NBE) cathodoluminescence (CL) peak of a low threading dislocation density (<103 cm−2) m-plane freestanding AlN substrate and a homoepitaxial film are assessed. Consistent with the polarization selection rules, the electric field (E) component of the NBE emission was essentially polarized parallel to the c-axis (Ec). Low-temperature CL spectra of the homoepitaxial film exhibited exciton fine structures: CL peaks at 6.0410 and 6.0279 eV, which were polarized Ec and E perpendicular to the c-axis (Ec), respectively, are assigned as being due to the recombination of free A-excitons of irreducible representations Γ1 and Γ5. The hydrogenic binding energy of the Γ1 A-exciton being 51 meV is verified. Detectable CL peaks under Ec polarization at 6.0315 and 6.0212 eV are tentatively assigned as Γ1-mixed Γ5-exciton-polaritons. The concentration of multiple vacancies consisting of an Al-vacancy (VAl) and N-vacancies (VNs), namely, VAlVN23, in the substrate was estimated by the positron annihilation measurement to be 2–3 × 1016 cm−3, while that in the epilayer was lower than the detection limit (<1016 cm−3). The NBE CL lifetime of 28 ps of the epilayer subsurface at 300 K is likely limited by the recombination at carbon deep-acceptors on nitrogen sites (3 × 1017 cm−3) and/or VAlVN23 Shockley-Read-Hall nonradiative recombination centers (∼1 × 1016 cm−3) with hole capture coefficients of approximately 1×107 and 3×106 cm3 s−1, respectively.

1.
V.
Adivarahan
et al.,
Jpn. J. Appl. Phys., Part 2
41
,
L435
(
2002
);
M. A.
Kahn
et al.,
Jpn. J. Appl. Phys., Part 1
44
,
7191
(
2005
).
2.
A.
Fujioka
et al.,
Appl. Phys. Express
3
,
041001
(
2010
).
3.
T.
Takano
et al.,
Appl. Phys. Express
10
,
031002
(
2017
);
H.
Hirayama
et al.,
Jpn. J. Appl. Phys.
53
,
100209
(
2014
);
H.
Hirayama
,
J. Appl. Phys.
97
,
091101
(
2005
).
4.
C.
Pernot
et al.,
Appl. Phys. Express
3
,
061004
(
2010
);
M.
Kaneda
et al.,
Jpn. J. Appl. Phys., Part 1
56
,
061002
(
2017
);
Y.
Nagasawa
and
A.
Hirano
,
Appl. Sci.
8
,
1264
(
2018
).
5.
M.
Shatalov
et al.,
Appl. Phys. Express
5
,
082101
(
2012
).
6.
A. A.
Allerman
et al.,
J. Cryst. Growth
272
,
227
(
2004
).
7.
M.
Kneissl
et al.,
Nat. Photonics
13
,
233
(
2019
);
M.
Kneissl
et al.,
Semicond. Sci. Technol.
26
,
014036
(
2011
).
8.
J. R.
Grandusky
et al.,
Appl. Phys. Express
4
,
082101
(
2011
);
J. R.
Grandusky
et al.,
Solid-State Electron.
78
,
127
(
2012
);
J. R.
Grandusky
et al.,
Appl. Phys. Express
6
,
032101
(
2013
).
9.
T.
Kinoshita
et al.,
Appl. Phys. Express
5
,
122101
(
2012
);
T.
Kinoshita
et al.,
Appl. Phys. Express
6
,
092103
(
2013
).
10.
T.
Wunderer
et al.,
Appl. Phys. Express
4
,
092101
(
2011
);
T.
Wunderer
et al.,
Phys. Status Solidi C
9
,
822
(
2012
).
11.
P.
Waltereit
et al.,
Nature
406
,
865
(
2000
);
[PubMed]
J. S.
Speck
and
S. F.
Chichibu
,
MRS Bull.
34
,
304
(
2009
) and the papers cited therein.
12.
D. A.
Miller
et al.,
Phys. Rev. Lett.
53
,
2173
(
1981
);
D. A.
Miller
,
D. S.
Chemla
,
T. C.
Damen
,
A. C.
Gross
,
W.
Wiegmann
,
T. H.
Wood
, and
C. A.
Burrus
,
Phys. Rev. B
32
,
1043
(
1985
).
13.
S.
Chichibu
et al.,
Appl. Phys. Lett.
69
,
4188
(
1996
);
T.
Takeuchi
et al.,
Jpn. J. Appl. Phys., Part 2
36
,
L177
(
1997
).
14.
S. F.
Chichibu
et al.,
Nat. Mater.
5
,
810
(
2006
).
15.
Y.
Taniyasu
et al.,
Appl. Phys. Lett.
90
,
261911
(
2007
);
Y.
Taniyasu
et al.,
Appl. Phys. Lett.
96
,
221110
(
2010
).
16.
Z. G.
Herro
et al.,
J. Cryst. Growth
286
,
205
(
2006
);
D.
Zhuang
et al.,
J. Cryst. Growth
287
,
372
(
2006
);
P.
Lu
et al.,
J. Cryst. Growth
312
,
58
(
2009
).
17.
R. T.
Bondokov
et al.,
J. Cryst. Growth
310
,
4020
(
2008
).
18.
M.
Bickermann
et al.,
J. Cryst. Growth
339
,
13
(
2012
).
19.
R.
Collazo
et al.,
Appl. Phys. Lett.
100
,
191914
(
2012
).
20.
T.
Mattila
and
R. M.
Nieminen
,
Phys. Rev. B
54
,
16676
(
1996
);
C.
Stampfl
and
C. G.
Van de Walle
,
Phys. Rev. B
65
,
155212
(
2002
).
21.
F.
Tuomisto
et al.,
J. Cryst. Growth
310
,
3998
(
2008
).
22.
A.
Uedono
et al.,
J. Appl. Phys.
105
,
054501
(
2009
).
23.
R.
Krause-Rehberg
and
H. S.
Leipner
,
Positron Annihilation in Semiconductors: Defect Studies
(
Springer-Verlag
,
Berlin
,
1999
), Vol.
127
.
24.
K.
Saarinen
et al.,
Phys. Rev. Lett.
79
,
3030
(
1997
).
25.
A.
Uedono
et al.,
J. Appl. Phys.
90
,
181
(
2001
).
26.
A.
Uedono
et al.,
J. Cryst. Growth
311
,
3075
(
2009
).
27.
F.
Tuomisto
and
I.
Makkonen
,
Rev. Mod. Phys.
85
,
1583
(
2013
).
28.
G. A.
Slack
et al.,
J. Cryst. Growth
246
,
287
(
2002
);
K. B.
Nam
et al.,
Appl. Phys. Lett.
86
,
222108
(
2005
);
E.
Monroy
et al.,
Appl. Phys. Lett.
88
,
071906
(
2006
);
A.
Dadgar
et al.,
J. Cryst. Growth
297
,
306
(
2006
).
29.
Q.
Yan
et al.,
Appl. Phys. Lett.
105
,
111104
(
2014
).
30.
J. S.
Harris
et al.,
Appl. Phys. Lett.
112
,
152101
(
2018
).
31.
S. F.
Chichibu
et al.,
Appl. Phys. Lett.
86
,
021914
(
2005
);
S. F.
Chichibu
et al.,
J. Appl. Phys.
111
,
103518
(
2012
).
32.
S. F.
Chichibu
et al.,
J. Appl. Phys.
123
,
161413
(
2018
).
33.
S. F.
Chichibu
et al.,
Appl. Phys. Lett.
112
,
211901
(
2018
);
K.
Shima
et al.,
Appl. Phys. Lett.
113
,
191901
(
2018
).
34.
S. F.
Chichibu
et al.,
J. Appl. Phys.
113
,
213506
(
2013
).
35.
M. B.
Graziano
et al.,
J. Cryst. Growth
507
,
389
(
2019
).
36.
Z.
Bryan
et al.,
J. Appl. Phys.
115
,
133503
(
2014
).
37.
I.
Bryan
et al.,
J. Appl. Phys.
116
,
133517
(
2014
).
38.
S. F.
Chichibu
et al.,
Appl. Phys. Lett.
97
,
201904
(
2010
);
T.
Onuma
et al.,
Rev. Sci. Instrum.
83
,
043905
(
2012
).
[PubMed]
39.
H.
Ikeda
et al.,
J. Appl. Phys.
102
,
123707
(
2007
);
H.
Ikeda
,
T.
Okamura
,
K.
Matsukawa
,
T.
Sota
,
M.
Sugawara
,
T.
Hoshi
,
P.
Cantu
,
R.
Sharma
,
J. F.
Kaeding
,
S.
Keller
,
U. K.
Mishra
,
K.
Kosaka
,
K.
Asai
,
S.
Sumiya
,
T.
Shibata
,
M.
Tanaka
,
J. S.
Speck
,
S. P.
DenBaars
,
S.
Nakamura
,
T.
Koyama
,
T.
Onuma
, and
S. F.
Chichibu
,
Erratum
103
,
089901
(
2008
).
40.
E.
Silveira
et al.,
Phys. Rev. B
71
,
041201(R)
(
2005
);
Y.
Yamada
et al.,
Appl. Phys. Lett.
92
,
131912
(
2008
).
41.
B.
Neuschl
et al.,
Phys. Status Solidi B
249
,
511
(
2012
).
42.
M.
Feneberg
et al.,
Appl. Phys. Lett.
102
,
052112
(
2013
).
43.
M.
Funato
et al.,
Appl. Phys. Express
5
,
082001
(
2012
);
R.
Ishii
et al.,
Phys. Rev. B
87
,
161204(R)
(
2013
).
44.
S. F.
Chichibu
et al.,
Appl. Phys. Lett.
103
,
142103
(
2013
).
45.
M.
Feneberg
et al.,
Appl. Phys. Lett.
106
,
242101
(
2015
).
46.
A.
Rice
et al.,
J. Appl. Phys.
108
,
043510
(
2010
).
47.
A.
Takagi
et al.,
J. Phys: Condens. Matter
24
,
415801
(
2012
).
48.
S. F.
Chichibu
et al.,
J. Appl. Phys.
99
,
093505
(
2006
).
49.
K.
Kim
et al.,
Phys. Rev. B
56
,
7363
(
1997
).
You do not currently have access to this content.