Microtransmission mechanisms made of elastic materials present an opportunity for exploring scalable mechanical systems integrated with sophisticated functionalities. This paper shows how the fundamentally limited range of motion in elastic mechanisms can be circumvented to create a frequency doubling functionality analog to angular velocity doubling in classical gears. The proposed mechanism utilizes the elastic deformation of its internal architecture and buckling of microflexures to perform frequency doubling kinematics. We demonstrate this by the fabrication of a microtransmission device for application in mechanical wrist watches. A key benefit of the proposed method is that such a transmission system can be integrated and fabricated as an embedded part of microarchitected materials to boost the frequency characteristics of energy storage, actuators, and inertial sensors to perform adequately for different applications.

1.
P.
Ouyang
,
R.
Tjiptoprodjo
,
W.
Zhang
, and
G.
Yang
, “
Micro-motion devices technology: The state of arts review
,”
Int. J. Adv. Manuf. Technol.
38
,
463
478
(
2008
).
2.
K. R.
Qalandar
,
B.
Strachan
,
B.
Gibson
,
M.
Sharma
,
A.
Ma
,
S.
Shaw
, and
K.
Turner
, “
Frequency division using a micromechanical resonance cascade
,”
Appl. Phys. Lett.
105
,
244103
(
2014
).
3.
J.
Wessels
,
D. F.
Machekposhti
,
J. L.
Herder
,
G.
Sèmon
, and
N.
Tolou
, “
Reciprocating geared mechanism with compliant suspension
,”
J. Microelectromech. Syst.
26
,
1047
1054
(
2017
).
4.
D. F.
Machekposhti
,
J. L.
Herder
,
G.
Sémon
, and
N.
Tolou
, “
A compliant micro frequency quadrupler transmission utilizing singularity
,”
J. Microelectromech. Syst.
27
,
506
512
(
2018
).
5.
B. S.
Williams
, “
Terahertz quantum-cascade lasers
,”
Nat. Photonics
1
,
517
(
2007
).
6.
Y.
Yang
,
C.
Callegari
,
X.
Feng
,
K.
Ekinci
, and
M.
Roukes
, “
Zeptogram-scale nanomechanical mass sensing
,”
Nano Lett.
6
,
583
586
(
2006
).
7.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
, “
Nonlinear energy harvesting
,”
Phys. Rev. Lett.
102
,
080601
(
2009
).
8.
J. H.
Lee
,
K. S.
Hwang
,
D. S.
Yoon
,
J. Y.
Kang
,
S. K.
Kim
, and
T. S.
Kim
, “
Direct electrical measurement of protein–water interactions and temperature dependence using piezoelectric microcantilevers
,”
Adv. Mater.
23
,
2920
2923
(
2011
).
9.
D.
Yamane
,
T.
Konishi
,
T.
Matsushima
,
K.
Machida
,
H.
Toshiyoshi
, and
K.
Masu
, “
Design of sub-1g microelectromechanical systems accelerometers
,”
Appl. Phys. Lett.
104
,
074102
(
2014
).
10.
J. C.
Long
,
H. W.
Chan
,
A. B.
Churnside
,
E. A.
Gulbis
,
M. C.
Varney
, and
J. C.
Price
, “
Upper limits to submillimetre-range forces from extra space-time dimensions
,”
Nature
421
,
922
(
2003
).
11.
R. G.
Knobel
and
A. N.
Cleland
, “
Nanometre-scale displacement sensing using a single electron transistor
,”
Nature
424
,
291
(
2003
).
12.
Y.
Wang
and
W.
Zhang
, “
Stochastic vibration model of gear transmission systems considering speed-dependent random errors
,”
Nonlinear Dyn.
17
,
187
203
(
1998
).
13.
G.
Bonori
and
F.
Pellicano
, “
Non-smooth dynamics of spur gears with manufacturing errors
,”
J. Sound Vib.
306
,
271
283
(
2007
).
14.
Y.
Guo
and
R. G.
Parker
, “
Dynamic modeling and analysis of a spur planetary gear involving tooth wedging and bearing clearance nonlinearity
,”
Eur. J. Mech.-A/Solids
29
,
1022
1033
(
2010
).
15.
L. L.
Howell
,
Compliant Mechanisms
(
John Wiley and Sons
,
2001
).
16.
D. F.
Machekposhti
,
N.
Tolou
, and
J.
Herder
, “
A statically balanced fully compliant power transmission mechanism between parallel rotational axes
,”
Mech. Mach. Theory
119
,
51
60
(
2018
).
17.
S.
Kota
,
J.
Hetrick
,
Z.
Li
, and
L.
Saggere
, “
Tailoring unconventional actuators using compliant transmissions: Design methods and applications
,”
IEEE/ASME Trans. Mechatron.
4
,
396
408
(
1999
).
18.
D. F.
Machekposhti
,
N.
Tolou
, and
J.
Herder
, “
A fully compliant homokinetic coupling
,”
J. Mech. Des.
140
,
012301
(
2018
).
You do not currently have access to this content.