We demonstrate an attack on a clock synchronization protocol that attempts to detect tampering of the synchronization channel using polarization-entangled photon pairs. The protocol relies on a symmetrical channel, where propagation delays do not depend on the propagation direction, for correctly deducing the offset between clocks—a condition that could be manipulated using optical circulators, which rely on static magnetic fields to break the reciprocity of propagating electromagnetic fields. Despite the polarization transformation induced within a set of circulators, our attack creates an error in time synchronization while evading detection.

1.
D. L.
Mills
,
IEEE Trans. Commun.
39
,
1482
(
1991
).
2.
61588-2009 – IEEE Standard for a precision clock synchronization protocol for networked measurement and control systems
” (IEEE, 2009), p. 10655421.
3.
D.
Piester
,
A.
Bauch
,
L.
Breakiron
,
D.
Matsakis
,
B.
Blanzano
, and
O.
Koudelka
,
Metrologia
45
,
185
(
2008
).
4.
Z.
Jiang
,
Y.
Huan
,
V.
Zhang
, and
P.
Dirk
, “
BIPM 2017 TWSTFT SATRE/SDR calibrations for UTC and non-UTC links
,” Technical Report, BIPM Technical Memorandum, TM268 V2a,
2017
.
5.
L.
Narula
and
T. E.
Humphreys
,
IEEE J. Sel. Top. Signal Process.
12
,
749
(
2018
).
6.
T.
Mizrahi
, in
2012 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication Proceedings
(IEEE,
2012
), pp.
1
6
.
7.
M.
Ullmann
and
M.
Vögeler
, in
2009 International Symposium on Precision Clock Synchronization for Measurement, Control and Communication
(
IEEE
,
2009
), pp.
1
6
.
8.
J.
Tsang
and
K.
Beznosov
, in
International Conference on Information and Communications Security
(
Springer
,
2006
), pp.
50
59
.
9.
D.
Rabadi
,
R.
Tan
,
D. K.
Yau
, and
S.
Viswanathan
, in
Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (
ACM
,
2017
), pp.
874
886
.
10.
J.
Lee
,
L.
Shen
,
A.
Cerè
,
J.
Troupe
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
,
Appl. Phys. Lett.
114
,
101102
(
2019
).
11.
F.
Hou
,
R.
Quan
,
R.
Dong
,
X.
Xiang
,
B.
Li
,
T.
Liu
,
X.
Yang
,
H.
Li
,
L.
You
,
Z.
Wang
, and
S.
Zhang
,
Phys. Rev. A
100
,
023849
(
2019
).
12.
A.
Lamas-Linares
and
J.
Troupe
, in
Advances in Photonics of Quantum Computing, Memory, and Communication XI
(
International Society for Optics and Photonics
,
2018
), Vol. 10547, p.
105470L
.
14.
W. K.
Wootters
and
W. H.
Zurek
,
Nature
299
,
802
(
1982
).
15.
J. E.
Troupe
and
A.
Lamas-Linares
, preprint arXiv:1808.09019 (
2018
).
16.
17.
P. G.
Kwiat
and
R. Y.
Chiao
,
Phys. Rev. Lett.
66
,
588
(
1991
).
18.
D. V.
Strekalov
and
Y. H.
Shih
,
Phys. Rev. A
56
,
3129
(
1997
).
19.
J.
Brendel
,
W.
Dultz
, and
W.
Martinessen
,
Phys. Rev. A
52
,
2551
(
1995
).
20.
A. K.
Jha
,
M.
Malik
, and
R. W.
Boyd
,
Phys. Rev. Lett.
101
,
180405
(
2008
).
21.
R. J.
Glauber
,
Phys. Rev.
130
,
2529
(
1963
).
22.
P. G.
Kwiat
,
K.
Mattle
,
H.
Weinfurter
,
A.
Zeilinger
,
A. V.
Sergienko
, and
Y.
Shih
,
Phys. Rev. Lett.
75
,
4337
(
1995
).
23.
C.
Ho
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
,
New J. Phys.
11
,
045011
(
2009
).
24.
J. B.
Altepeter
,
E. R.
Jeffrey
, and
P. G.
Kwiat
,
Adv. At., Mol., Opt. Phys.
52
,
105
(
2005
).
25.
D.
Jalas
,
A. Y.
Petrov
, and
M.
Eich
,
Opt. Lett.
39
,
1425
(
2014
).
26.
V.
Dmitriev
,
G.
Portela
, and
D.
Zimmer
,
Opt. Lett.
38
,
4040
(
2013
).
27.
V.
Dmitriev
,
M. N.
Kawakatsu
, and
G.
Portela
,
Opt. Lett.
38
,
1016
(
2013
).
28.
L.
Bi
,
J.
Hu
,
P.
Jiang
,
D. H.
Kim
,
G. F.
Dionne
,
L. C.
Kimerling
, and
C.
Ross
,
Nat. Photonics
5
,
758
(
2011
).
29.
Z.
Yu
and
S.
Fan
,
Nat. Photonics
3
,
91
(
2009
).
30.

Supplementary Material

You do not currently have access to this content.