We theoretically, numerically, and experimentally analyze the Density-Near-Zero (DNZ) regime of a one-dimensional acoustic metamaterial. This acoustic metamaterial is composed of thin elastic plates periodically clamped in an air-filled waveguide, and the effective dynamic zero mass density is obtained from the strong dispersion around the bandgaps associated with the resonances of the plates. We emphasize the importance of the impedance mismatch between the acoustic metamaterial and the surrounding waveguide at the frequency of the zero effective density in addition to the consequences of the inherent losses. As a result, the frequency of the zero phase propagation, i.e., the acoustic propagation with zero phase delay, is not exactly the frequency of the zero density and lies in the frequency bandgap where the effective density is negative. Considering these limitations, the zero phase propagation is still experimentally observed and a subwavelength acoustic dipole is numerically designed, thus demonstrating the possible realistic implementations of DNZ acoustic metamaterials.

1.
S. A.
Cummer
,
J.
Christensen
, and
A.
Alù
, “
Controlling sound with acoustic metamaterials
,”
Nat. Rev. Mater.
1
,
16001
(
2016
).
2.
G.
Ma
and
P.
Sheng
, “
Acoustic metamaterials: From local resonances to broad horizons
,”
Sci. Adv.
2
,
e1501595
(
2016
).
3.
M.
Yang
and
P.
Sheng
, “
Sound absorption structures: From porous media to acoustic metamaterials
,”
Annu. Rev. Mater. Res.
47
,
83
114
(
2017
).
4.
P. A.
Deymier
,
Acoustic Metamaterials and Phononic Crystals
, Springer Series in Solid-State Sciences Vol.
173
(
Springer-Verlag
,
Berlin/Heidelberg
,
2013
).
5.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
, “
Locally resonant sonic materials
,”
Science
289
,
1734
1736
(
2000
).
6.
P.
Sheng
,
X. X.
Zhang
,
Z.
Liu
, and
C. T.
Chan
, “
Locally resonant sonic materials
,”
Physica B
338
,
201
205
(
2003
).
7.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
, “
Membrane-type acoustic metamaterial with negative dynamic mass
,”
Phys. Rev. Lett.
101
,
204301
(
2008
).
8.
C. M.
Park
,
J. J.
Park
,
S. H.
Lee
,
Y. M.
Seo
,
C. K.
Kim
, and
S. H.
Lee
, “
Amplification of acoustic evanescent waves using metamaterial slabs
,”
Phys. Rev. Lett.
107
,
194301
(
2011
).
9.
A.
Alù
,
M. G.
Silveirinha
, and
N.
Engheta
, “
Transmission-line analysis of ϵ-near-zero–filled narrow channels
,”
Phys. Rev. E
78
,
016604
(
2008
).
10.
B.
Edwards
,
A.
Alù
,
M. E.
Young
,
M.
Silveirinha
, and
N.
Engheta
, “
Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide
,”
Phys. Rev. Lett.
100
,
033903
(
2008
).
11.
J. J.
Park
,
K. J. B.
Lee
,
O. B.
Wright
,
M. K.
Jung
, and
S. H.
Lee
, “
Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials
,”
Phys. Rev. Lett.
110
,
244302
(
2013
).
12.
A.
Alù
,
M. G.
Silveirinha
,
A.
Salandrino
, and
N.
Engheta
, “
Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern
,”
Phys. Rev. B
75
,
155410
(
2007
).
13.
M.
Silveirinha
and
N.
Engheta
, “
Tunneling of electromagnetic energy through subwavelength channels and bends using ϵ-near-zero materials
,”
Phys. Rev. Lett.
97
,
157403
(
2006
).
14.
M. G.
Silveirinha
and
N.
Engheta
, “
Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ϵ near-zero metamaterials
,”
Phys. Rev. B
76
,
245109
(
2007
).
15.
R.
Liu
,
Q.
Cheng
,
T.
Hand
,
J. J.
Mock
,
T. J.
Cui
,
S. A.
Cummer
, and
D. R.
Smith
, “
Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies
,”
Phys. Rev. Lett.
100
,
023903
(
2008
).
16.
B.
Edwards
,
A.
Al
,
M. G.
Silveirinha
, and
N.
Engheta
, “
Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects
,”
J. Appl. Phys.
105
,
044905
(
2009
).
17.
R.
Fleury
and
A.
Alù
, “
Extraordinary sound transmission through density-near-zero ultranarrow channels
,”
Phys. Rev. Lett.
111
,
055501
(
2013
).
18.
R.
Graciá-Salgado
,
V. M.
García-Chocano
,
D.
Torrent
, and
J.
Sánchez-Dehesa
, “
Negative mass density and ρ-near-zero quasi-two-dimensional metamaterials: Design and applications
,”
Phys. Rev. B
88
,
224305
(
2013
).
19.
A.
Alù
and
N.
Engheta
, “
Coaxial-to-waveguide matching with ε-near-zero ultranarrow channels and bends
,”
IEEE Trans. Antennas Propag.
58
,
328
339
(
2010
).
20.
A.
Alù
and
N.
Engheta
, “
Light squeezing through arbitrarily shaped plasmonic channels and sharp bends
,”
Phys. Rev. B
78
,
035440
(
2008
).
21.
A.
Alù
and
N.
Engheta
, “
Dielectric sensing in ϵ-near-zero narrow waveguide channels
,”
Phys. Rev. B
78
,
045102
(
2008
).
22.
D. A.
Powell
,
A.
Alù
,
B.
Edwards
,
A.
Vakil
,
Y. S.
Kivshar
, and
N.
Engheta
, “
Nonlinear control of tunneling through an epsilon-near-zero channel
,”
Phys. Rev. B
79
,
245135
(
2009
).
23.
C.
Argyropoulos
,
P.-Y.
Chen
,
G.
D'Aguanno
,
N.
Engheta
, and
A.
Alù
, “
Boosting optical nonlinearities in ϵ-near-zero plasmonic channels
,”
Phys. Rev. B
85
,
045129
(
2012
).
24.
R. W.
Ziolkowski
, “
Propagation in and scattering from a matched metamaterial having a zero index of refraction
,”
Phys. Rev. E
70
,
046608
(
2004
).
25.
F.
Bongard
,
H.
Lissek
, and
J. R.
Mosig
, “
Acoustic transmission line metamaterial with negative/zero/positive refractive index
,”
Phys. Rev. B
82
,
094306
(
2010
).
26.
T.-Y.
Huang
,
C.
Shen
, and
Y.
Jing
, “
Membrane- and plate-type acoustic metamaterials
,”
J. Acoust. Soc. Am.
139
,
3240
3250
(
2016
).
27.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
, “
Acoustic metasurface with hybrid resonances
,”
Nat. Mater.
13
,
873
878
(
2014
).
28.
V.
Romero-García
,
G.
Theocharis
,
O.
Richoux
,
A.
Merkel
,
V.
Tournat
, and
V.
Pagneux
, “
Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators
,”
Sci. Rep.
6
,
19519
(
2016
).
29.
V.
Cutanda Henriquez
,
V.
Garcia-Chocano
, and
J.
Sanchez-Dehesa
, “
Viscothermal losses in double-negative acoustic metamaterials
,”
Phys. Rev. Appl.
8
,
014029
(
2017
).
30.
C.
Zwikker
and
C. W.
Kosten
, “
Sound absorbing materials
,” (
1949
).
31.
M. R.
Stinson
, “
The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape
,”
J. Acoust. Soc. Am.
89
,
550
(
1991
).
32.
M.
Niskanen
,
J.
Groby
,
A.
Duclos
,
O.
Dazel
,
J. C.
Le Roux
,
N.
Poulain
,
T.
Huttunen
, and
T.
Lähivaara
, “
Deterministic and statistical characterization of rigid frame porous materials from impedance tube measurements
,”
J. Acoust. Soc. Am.
142
,
2407
(
2017
).
33.
J.-P.
Groby
,
W.
Lauriks
, and
T. E.
Vigran
, “
Total absorption peak by use of a rigid frame porous layer backed by a rigid multi-irregularities grating
,”
J. Acoust. Soc. Am.
127
,
2865
2874
(
2010
).
34.
J.-F.
Allard
and
N.
Atalla
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
(
Wiley-Blackwell
,
2009
).
35.
L.
De Ryck
,
J.-P.
Groby
,
P.
Leclaire
,
W.
Lauriks
,
A.
Wirgin
,
Z. E. A.
Fellah
, and
C.
Depollier
, “
Acoustic wave propagation in a macroscopically inhomogeneous porous medium saturated by a fluid
,”
Appl. Phys. Lett.
90
,
181901
(
2007
).

Supplementary Material

You do not currently have access to this content.