We demonstrate that an electrostatic levitation microelectromechanical systems (MEMS) switch can be operated by applying mechanical pressure to a triboelectric generator. The toggling mechanism of the switch draws no current but requires a high actuating voltage, while the generator can supply a high voltage but only produces microwatts of power. The synergistic combination results in an entirely self-powered sensor and switch; the normally closed MEMS switch can be toggled open by applying a threshold force to the generator without the need for any outside power or supplementary circuitry. A model of the MEMS switch and electrostatic force is validated with experimental data. An output voltage vs input force relationship for the generator is experimentally extracted.

1.
M. I.
Younis
,
Mems Linear and Nonlinear Statics and Dynamics
(
Springer
,
New York
,
2011
).
2.
W.-M.
Zhang
,
G.
Meng
, and
D.
Chen
, “
Stability, nonlinearity and reliability of electrostatically actuated mems devices
,”
Sensors
7
,
760
796
(
2007
).
3.
K. B.
Lee
and
Y. H.
Cho
, “
Laterally driven electrostatic repulsive-force microactuators using asymmetric field distribution
,”
J. Microelectromech. Syst.
10
,
128
136
(
2001
).
4.
Q.
Chen
,
Y.-C.
Lai
,
J.
Chae
, and
Y.
Do
, “
Anti-phase synchronization in microelectromechanical systems and effect of impulsive perturbations
,”
Phys. Rev. B
87
,
144304
(
2013
).
5.
Y.
Linzon
,
B.
Ilic
,
S.
Lulinsky
, and
S.
Krylov
, “
Efficient parametric excitation of silicon-on-insulator microcantilever beams by fringing electrostatic fields
,”
J. Appl. Phys.
113
,
163508
(
2013
).
6.
R. N.
Miles
, “
A compliant capacitive sensor for acoustics: Avoiding electrostatic forces at high bias voltages
,”
IEEE Sens.
18
,
5691
5698
(
2018
).
7.
S.
He
and
R.
Ben Mrad
, “
Large-stroke microelectrostatic actuators for vertical translation of micromirrors used in adaptive optics
,”
IEEE Trans. Ind. Electron.
52
,
974
983
(
2005
).
8.
S.
He
and
R.
Ben Mrad
, “
Design, modeling, and demonstration of a MEMS repulsive-force out-of-plane electrostatic micro actuator
,”
J. Microelectromech. Syst.
17
,
532
547
(
2008
).
9.
C.
Fan
and
S.
He
, “
A two-row interdigitating-finger repulsive-torque electrostatic actuator and its application to micromirror vector display
,”
J. Microelectromech. Syst.
24
,
2049
2061
(
2015
).
10.
M.
Pallay
,
M.
Daeichin
, and
S.
Towfighian
, “
Dynamic behavior of an Electrostatic MEMS resonator with repulsive actuation
,”
Nonlinear Dyn.
89
,
1525
1538
(
2017
).
11.
M.
Pallay
and
S.
Towfighian
, “
A parametric electrostatic resonator using repulsive force
,”
Sens. Actuators A: Phys.
277
,
134
141
(
2018
).
12.
M.
Ozdogan
,
M.
Daeichin
,
A.
Ramini
, and
S.
Towfighian
, “
Parametric resonance of a repulsive force MEMS electrostatic mirror
,”
Sens. Actuators A: Phys.
265
,
20
31
(
2017
).
13.
M.
Pallay
and
S.
Towfighian
, “
A reliable MEMS switch using electrostatic levitation
,”
Appl. Phys. Lett.
113
,
213102
(
2018
).
14.
W.
Du
,
X.
Han
,
L.
Lin
,
M.
Chen
,
X.
Li
,
C.
Pan
, and
Z. L.
Wang
, “
A three dimensional multi-layered sliding triboelectric nanogenerator
,”
Adv. Energy Mater.
4
,
1301592
(
2014
).
15.
Y.
Xie
,
S.
Wang
,
S.
Niu
,
L.
Lin
,
Q.
Jing
,
J.
Yang
,
Z.
Wu
, and
Z. L.
Wang
, “
Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
,”
Adv. Mater.
26
,
6599
6607
(
2014
).
16.
G.
Zhu
,
C.
Pan
,
W.
Guo
,
C.-Y.
Chen
,
Y.
Zhou
,
R.
Yu
, and
Z. L.
Wang
, “
Triboelectric-generator-driven pulse electrodeposition for micropatterning
,”
Nano Lett.
12
,
4960
4965
(
2012
).
17.
S.
Niu
,
Y.
Liu
,
S.
Wang
,
L.
Lin
,
Y. S.
Zhou
,
Y.
Hu
, and
Z. L.
Wang
, “
Theory of sliding-mode triboelectric nanogenerators
,”
Adv. Mater.
25
,
6184
6193
(
2013
).
18.
G.
Zhu
,
J.
Chen
,
T.
Zhang
,
Q.
Jing
, and
Z. L.
Wang
, “
Radial-arrayed rotary electrification for high performance triboelectric generator
,”
Nat. Commun.
5
,
3426
(
2014
).
19.
L.
Lin
,
S.
Wang
,
S.
Niu
,
C.
Liu
,
Y.
Xie
, and
Z. L.
Wang
, “
Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor
,”
ACS Appl. Mater. Interfaces
6
,
3031
3038
(
2014
).
20.
A.
Ibrahim
,
A.
Ramini
, and
S.
Towfighian
, “
Experimental and theoretical investigation of an impact vibration harvester with triboelectric transduction
,”
J. Sound Vib.
416
,
111
124
(
2018
).
21.
C.
Jin
,
D. S.
Kia
,
M.
Jones
, and
S.
Towfighian
, “
On the contact behavior of micro-/nano-structured interface used in vertical-contact-mode triboelectric nanogenerators
,”
Nano Energy
27
,
68
77
(
2016
).
22.
A.
Cowen
,
B.
Hardy
,
R.
Mahadevan
, and
S.
Wilcenski
, “
PolyMUMPs Design Handbook a MUMPs® process
,” (MEMSCAP. Inc., Durham, NC,
2011
).
23.
S.
Wang
,
L.
Lin
, and
Z. L.
Wang
, “
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
,”
Nano Lett.
12
,
6339
6346
(
2012
).
24.
M.
Pallay
,
R. N.
Miles
, and
S.
Towfighian
, “
Merging parallel-plate and levitation actuators to enable linearity and tunability in electrostatic mems
,”
J. Appl. Phys.
126
,
014501
(
2019
).
25.
S.
Towfighian
,
S.
He
, and
R.
Ben Mrad
, “
A low voltage electrostatic micro actuator for large out-of-plane displacement
,” in
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
(American Society of Mechanical Engineers Digital Collection,
2014
), p.
7
.
You do not currently have access to this content.