Due to its abundant, inexpensive, and nontoxic features, higher manganese silicide MnSi1.75 has drawn intensive attention as a promising middle temperature thermoelectric material. In this study, we applied aberration-corrected scanning transmission electron microscopy to characterize its chimney ladder crystal structure and found the particular contrast along the [110] direction, contributed from the enhancement of helical Si layers on Mn layers. Moreover, it is demonstrated that the Seebeck coefficient and electrical conductivity of MnSi1.75 could be simultaneously reinforced via boron doping, giving a peak power factor value of 1.72 mW m−1 K−2 at 723 K for Mn(B0.04Si0.96)1.75. Interestingly, it is indicated that boron would occupy both Si lattice and interstitial sites, resulting in an optimized charge carrier concentration and a reduced lattice thermal conductivity at the same time. A maximum zT value of ∼0.55 at 773 K and a high zTave value of 0.4 from 300 to 823 K were eventually realized in the Mn(B0.04Si0.96)1.75 sample.

1.
J.
He
and
T. M.
Tritt
,
Science
357
(
6358
),
1369
(
2017
).
2.
Y.
Pan
and
J. F.
Li
,
NPG Asia Mater.
8
,
e275
(
2016
).
3.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
(
5888
),
554
(
2008
).
4.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
(
2011
).
5.
Y.
Pei
,
H.
Wang
, and
G. J.
Snyder
,
Adv. Mater.
24
(
46
),
6125
(
2012
).
6.
K.
Biswas
,
J.
He
,
I. D.
Blum
,
C. I.
Wu
,
T. P.
Hogan
,
D. N.
Seidman
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
489
,
414
(
2012
).
7.
L. D.
Zhao
,
H. J.
Wu
,
S. Q.
Hao
,
C. I.
Wu
,
X. Y.
Zhou
,
K.
Biswas
,
J. Q.
He
,
T. P.
Hogan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Energy Environ. Sci.
6
(
11
),
3346
(
2013
).
8.
H. J.
Wu
,
L. D.
Zhao
,
F. S.
Zheng
,
D.
Wu
,
Y. L.
Pei
,
X.
Tong
,
M. G.
Kanatzidis
, and
J. Q.
He
,
Nat. Commun.
5
,
4515
(
2014
).
9.
R.
Nunna
,
P.
Qiu
,
M.
Yin
,
H.
Chen
,
R.
Hanus
,
Q.
Song
,
T.
Zhang
,
M. Y.
Chou
,
M. T.
Agne
,
J.
He
,
G. J.
Snyder
,
X.
Shi
, and
L.
Chen
,
Energy Environ. Sci.
10
(
9
),
1928
(
2017
).
10.
L. D.
Zhao
,
S. H.
Lo
,
Y.
Zhang
,
H.
Sun
,
G.
Tan
,
C.
Uher
,
C.
Wolverton
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nature
508
,
373
(
2014
).
11.
M.
Hong
,
Z. G.
Chen
,
L.
Yang
,
Y. C.
Zou
,
M. S.
Dargusch
,
H.
Wang
, and
J.
Zou
,
Adv. Mater.
30
(
11
),
1705942
(
2018
).
12.
R.
Amatya
and
R. J.
Ram
,
J. Electron. Mater.
41
(
6
),
1011
(
2012
).
13.
S.
LeBlanc
,
S. K.
Yee
,
M. L.
Scullin
,
C.
Dames
, and
K. E.
Goodson
,
Renewable Sustainable Energy Rev.
32
,
313
(
2014
).
14.
H.
Udono
,
K.
Nakamori
,
Y.
Takahashi
,
Y.
Ujiie
,
I. J.
Ohsugi
, and
T.
Iida
,
J. Electron. Mater.
40
(
5
),
1165
(
2011
).
15.
O.
Schwomma
,
A.
Preising
,
H.
Nowotny
, and
A.
Wittmann
,
Monatsh. Chem. Verw. Teile Anderer Wiss.
95
(
6
),
1527
(
1964
).
16.
H. W.
Knott
,
M. H.
Mueller
, and
L.
Heaton
,
Acta Crystallogr.
23
,
549
(
1967
).
17.
J. M.
Higgins
,
A. L.
Schmitt
,
I. A.
Guzei
, and
S.
Jin
,
J. Am. Chem. Soc.
130
(
47
),
16086
(
2008
).
18.
G.
Zwilling
and
H.
Nowotny
,
Mon. Chem.
102
(
3
),
672
(
1971
).
19.
Y.
Sadia
,
Z.
Aminov
,
D.
Mogilyansky
, and
Y.
Gelbstein
,
Intermetallics
68
,
71
(
2016
).
20.
X.
Chen
,
S. N.
Girard
,
F.
Meng
,
E.
Lara Curzio
,
S.
Jin
,
J. B.
Goodenough
,
J.
Zhou
, and
L.
Shi
,
Adv. Energy Mater.
4
(
14
),
1400452
(
2014
).
21.
X.
Chen
,
J.
Zhou
,
J. B.
Goodenough
, and
L.
Shi
,
J. Mater. Chem. C
3
(
40
),
10500
(
2015
).
22.
N. L.
Okamoto
,
T.
Koyama
,
K.
Kishida
,
K.
Tanaka
, and
H.
Inui
,
Acta Mater.
57
(
17
),
5036
(
2009
).
23.
V.
Ponnambalam
,
D. T.
Morelli
,
S.
Bhattacharya
, and
T. M.
Tritt
,
J. Alloys Compd.
580
,
598
(
2013
).
24.
W. H.
Luo
,
H.
Li
,
F.
Fu
,
W.
Hao
, and
X. F.
Tang
,
J. Electron. Mater.
40
(
5
),
1233
(
2011
).
25.
X.
Chen
,
A.
Weathers
,
D.
Salta
,
L.
Zhang
,
J.
Zhou
,
J. B.
Goodenough
, and
L.
Shi
,
J. Appl. Phys.
114
(
17
),
173705
(
2013
).
26.
H. Q.
Ye
and
S.
Amelinckx
,
J. Solid State Chem.
61
(
1
),
8
(
1986
).
27.
T.
Homma
,
H.
Mima
,
M.
Nanko
, and
M.
Takeda
,
Appl. Phys. Lett.
108
(
10
),
103901
(
2016
).
28.
D. C.
Fredrickson
,
S.
Lee
,
R.
Hoffmann
, and
J.
Lin
,
Inorg. Chem.
43
(
20
),
6151
(
2004
).
29.
R. D.
Ridder
,
G.
Vantendeloo
, and
S.
Amelinckx
,
Phys. Status Solidi A
33
(
1
),
383
(
1976
).
30.
J.
Yang
,
L.
Xi
,
W.
Qiu
,
L.
Wu
,
X.
Shi
,
L.
Chen
,
J.
Yang
,
W.
Zhang
,
C.
Uher
, and
D. J.
Singh
,
NPJ Comput. Mater.
2
,
15015
(
2016
).
31.
D.
Wu
,
S.
Huang
,
D.
Feng
,
B.
Li
,
Y.
Chen
,
J.
Zhang
, and
J.
He
,
Phys. Chem. Chem. Phys.
18
(
34
),
23872
(
2016
).
32.
J.
Callaway
,
Phys. Rev.
113
(
4
),
1046
(
1959
).
33.
P. G.
Klemens
,
Phys. Rev.
119
(
2
),
507
(
1960
).
34.
J.
Yang
,
G. P.
Meisner
, and
L.
Chen
,
Appl. Phys. Lett.
85
(
7
),
1140
(
2004
).

Supplementary Material

You do not currently have access to this content.