We report on the local electronic structure of an interstitial muon (Mu) as pseudohydrogen in In-Ga-Zn oxide (IGZO) semiconductors studied by muon spin rotation/relaxation (μSR) experiment. In polycrystalline (c-) IGZO, it is inferred that Mu is in a diamagnetic state, where the μSR time spectra under zero external field are perfectly described by the Gaussian Kubo-Toyabe relaxation function with the linewidth Δ serving as a sensitive measure for the random local fields from In/Ga nuclear magnetic moments. The magnitude of Δ combined with the density functional theory calculations for H (to mimic Mu) suggests that Mu occupies Zn-O bond-center site (MuBC) similar to the case in crystalline ZnO. This implies that the diamagnetic state in c-IGZO corresponds to MuBC+, thus serving as an electron donor. In amorphous (a-) IGZO, the local Mu structure in the as-deposited films is nearly identical to that in c-IGZO, suggesting MuBC+ for the electronic state. In contrast, the diamagnetic signal in heavily hydrogenated a-IGZO films exhibits the Lorentzian Kubo-Toyabe relaxation, implying that Mu accompanies more inhomogeneous distribution of the neighboring nuclear spins that may involve a Mu H-complex state in an oxygen vacancy.

1.
H.
Hosono
,
J. Non-Cryst. Solids
203
,
334
(
1996
);
H.
Hosono
,
J. Non-Cryst. Solids
352
,
851
(
2006
).
2.
T.
Kamiya
and
H.
Hosono
,
NPG Asia Mater.
2
,
15
(
2010
).
3.
J.
Robertson
,
J. Non-Cryst. Solids
358
,
2437
(
2012
).
4.
K.
Ghaffarzadeh
,
A.
Nathan
,
J.
Robertson
,
S.
Kim
,
S.
Jeong
,
C.
Kim
,
U.
Chung
, and
J.
Lee
,
Appl. Phys. Lett.
97
,
113504
(
2010
);
K.
Ghaffarzadeh
,
A.
Nathan
,
J.
Robertson
,
S.
Kim
,
S.
Jeong
,
C.
Kim
,
U.
Chung
, and
J.
Lee
,
Appl. Phys. Lett.
97
,
143510
(
2010
).
5.
D. H.
Lee
,
K.
Kawamura
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Electrochem. Solid-State Lett.
13
,
H324
(
2010
).
6.
M. D. H.
Chowdhury
,
P.
Migliorato
, and
J.
Jang
,
Appl. Phys. Lett.
97
,
173506
(
2010
).
7.
J. S.
Park
,
W. J.
Maeng
,
H.-S.
Kim
, and
J.-S.
Park
,
Thin Solid Films
520
,
1679
(
2012
).
8.
S.
Jeon
,
S. E.
Ahn
,
I.
Song
,
C. J.
Kim
,
U. I.
Chung
,
E. H.
Lee
,
I.
Yoo
,
A.
Nathan
,
S.
Lee
,
J.
Robertson
, and
K.
Kim
,
Nat. Mater.
11
,
301
(
2012
).
9.
J. K.
Jeong
,
J. Mater. Res.
28
,
2071
(
2013
).
10.
K.
Nomura
,
T.
Kamiya
,
E.
Ikenaga
,
H.
Yanagi
,
K.
Kobayashi
, and
H.
Hosono
,
J. Appl. Phys.
109
,
073726
(
2011
).
11.
K.
Ide
,
K.
Nomura
,
T.
Kamiya
, and
H.
Hosono
,
Phys. Status Solidi A
216
,
1800372
(
2019
).
12.
T.
Kamiya
,
K.
Nomura
, and
H.
Hosono
,
J. Disp. Technol.
5
,
273
(
2009
); and references therein.
13.
J.
Bang
,
S.
Matsuishi
, and
H.
Hosono
,
Appl. Phys. Lett.
110
,
232105
(
2017
).
14.
H.
Li
,
Y.
Guo
, and
J.
Robertson
,
Sci. Rep.
7
,
16858
(
2017
);
[PubMed]
H.
Li
,
Y.
Guo
, and
J.
Robertson
,
Phys. Rev. Mater.
2
,
074601
(
2018
).
15.
H.
Okabe
,
M.
Hiraishi
,
S.
Takeshita
,
A.
Koda
,
K. M.
Kojima
, and
R.
Kadono
,
Phys. Rev. B.
98
,
075210
(
2018
).
16.
H.
Tang
,
Y.
Kishida
,
K.
Ide
,
Y.
Toda
,
H.
Hiramatsu
,
S.
Matsuishi
,
S.
Ueda
,
N.
Ohashi
,
H.
Kumomi
,
H.
Hosono
, and
T.
Kamiya
,
ECS J. Solid State Sci. Technol.
6
,
P365
(
2017
).
17.
E.
Holzschuh
,
W.
Kündig
,
P. F.
Meier
,
B. D.
Patterson
,
J. P. F.
Sellschop
,
M. C.
Stemmet
, and
H.
Appel
,
Phys. Rev. A
25
,
1272
(
1982
).
18.
R. F.
Kiefl
,
W.
Odermatt
,
H.
Baumeler
,
J.
Felber
,
H.
Keller
,
W.
Kündig
,
P. F.
Meier
,
B. D.
Patterson
,
J. W.
Schneider
,
K. W.
Blazey
,
T. L.
Estle
, and
C.
Schwab
,
Phys. Rev. B
34
,
1474
(
1986
).
19.
R. S.
Hayano
,
Y. J.
Uemura
,
J.
Imazato
,
N.
Nishida
,
T.
Yamazaki
, and
R.
Kubo
,
Phys. Rev. B
20
,
850
(
1979
).
20.
K. M.
Kojima
,
T.
Murakami
,
Y.
Takahashi
,
H.
Lee
,
S. Y.
Suzuki
,
A.
Koda
,
I.
Yamauchi
,
M.
Miyazaki
,
M.
Hiraishi
,
H.
Okabe
,
S.
Takeshita
,
R.
Kadono
,
T.
Ito
,
W.
Higemoto
,
S.
Kanda
,
Y.
Fukao
,
N.
Saito
,
M.
Saito
,
M.
Ikeno
,
T.
Uchida
, and
M. M.
Tanaka
,
J. Phys.
551
,
012063
(
2014
).
21.
W.
Eckstein
,
Computer Simulation of Ion-Solid Interactions
(
Springer
,
Berlin
,
1991
).
22.
K. M.
Kojima
,
J.
Yamanobe
,
H.
Eisaki
,
S.
Uchida
,
Y.
Fudamoto
,
I. M.
Gat
,
M. I.
Larkin
,
A.
Savici
,
Y. J.
Uemura
,
P. P.
Kyriakou
,
M. T.
Rovers
, and
G. M.
Luke
,
Phys. Rev. B
70
,
094402
(
2004
).
23.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
);
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
24.
C. G.
Van de Walle
,
Phys. Rev. Lett.
85
,
1012
(
2000
).
25.
K.
Shimomura
,
K.
Nishiyama
, and
R.
Kadono
,
Phys. Rev. Lett.
89
,
255505
(
2002
).
26.
Ç.
Kiliç
and
A.
Zunger
,
Appl. Phys. Lett.
81
,
73
(
2002
).
27.
S. F. J.
Cox
,
J. L.
Gavartin
,
J. S.
Lord
,
S. P.
Cottrell
,
J. M.
Gil
,
H. V.
Alberto
,
J.
Piroto Duarte
,
R. C.
Vilao
,
N.
Ayres de Campos
,
D. J.
Keeble
,
E. A.
Davis
,
M.
Charlton
, and
D. P.
van der Werf
,
J. Phys.
18
,
1079
(
2006
).
28.
M. R.
Crook
and
R.
Cywinski
,
J. Phys.
9
,
1149
(
1997
).
29.
R.
Kadono
,
K.
Shimomura
,
K. H.
Satoh
,
S.
Takeshita
,
A.
Koda
,
K.
Nishiyama
,
E.
Akiba
,
R. M.
Ayabe
,
M.
Kuba
, and
C. M.
Jensen
,
Phys. Rev. Lett.
100
,
026401
(
2008
).
30.
R.
Beck
,
P. F.
Meier
, and
A.
Schenck
,
Z. Phys. B
22
,
109
(
1975
).
You do not currently have access to this content.