Cubic boron arsenide (BAs) is an emerging semiconductor material with a record-high thermal conductivity subject to intensive research interest for its applications in electronics thermal management. However, many fundamental properties of BAs remain unexplored experimentally since high-quality BAs single crystals have only been obtained very recently. Here, we report the systematic experimental measurements of important physical properties of BAs, including the bandgap, optical refractive index, elastic modulus, shear modulus, Poisson's ratio, thermal expansion coefficient, and heat capacity. In particular, light absorption and Fabry–Pérot interference were used to measure an optical bandgap of 1.82 eV and a refractive index of 3.29 (657 nm) at room temperature. A picoultrasonic method, based on ultrafast optical pump probe spectroscopy, was used to measure a high elastic modulus of 326 GPa, which is twice that of silicon. Furthermore, temperature-dependent X-ray diffraction was used to measure a linear thermal expansion coefficient of 3.85 × 10−6 K−1; this value is very close to prototype semiconductors such as GaN, which underscores the promise of BAs for cooling high power and high frequency electronics. We also performed ab initio theory calculations and observed good agreement between the experimental and theoretical results. Importantly, this work aims to build a database (Table I) for the basic physical properties of BAs with the expectation that this semiconductor will inspire broad research and applications in electronics, photonics, and mechanics.

1.
3.
S.
Chu
and
A.
Majumdar
,
Nature
488
,
294
(
2012
).
4.
A.
Shehabi
 et al., United States Data Center Energy Usage Report No. LBNL-1005775 (
2016
).
5.
International Technology Roadmap for Semiconductors, ITRS 2.0 2015 edition; www.itrs2.net/. (
2015
).
6.
J. S.
Kang
,
H.
Wu
, and
Y.
Hu
,
Nano Lett.
17
,
7507
(
2017
).
7.
J. S.
Kang
,
M.
Li
,
H.
Wu
,
H.
Nguyen
, and
Y.
Hu
,
Science
361
,
575
(
2018
).
9.
F.
Tian
 et al.,
Science
362
,
582
(
2018
).
10.
A.
Sood
 et al., in
Proceedings of the 17th Intersociety Conference Thermal Thermomechanical Phenomena in Electronic Systems
(IEEE,
2018
), p.
1396
.
11.
A.
Bar-Cohen
and
P.
Wang
,
J. Heat Transfer
134
,
051017
(
2012
).
12.
Y.
Won
 et al.,
IEEE Trans. Compon., Packag. Manufacuring Technol.
5
,
737
(
2015
).
13.
Handbook of Crystal Growth—Vol. II: Bulk Crystal Growth
, edited by
T.
Nishinaga
and
P.
Rudolph
(
Elsevier
,
Amsterdam
,
2015
).
14.
A. M.
Marconnet
 et al.,
Rev. Mod. Phys.
85
,
1295
(
2013
).
15.
L.
Lindsay
,
D. A.
Broido
, and
T. L.
Reinecke
,
Phys. Rev. Lett.
111
,
25901
(
2013
).
16.
T.
Feng
,
L.
Lindsay
, and
X.
Ruan
,
Phys. Rev. B
96
,
161201(R)
(
2017
).
17.
H.
Fan
,
H.
Wu
,
L.
Lindsay
, and
Y.
Hu
,
Phys. Rev. B
100
,
085420
(
2019
).
18.
J. A.
Perri
,
S.
Laplaca
, and
B.
Post
,
Acta Crystallogr.
11
,
310
(
1958
).
19.
F. V.
Williams
and
R. A.
Ruehrwein
,
J. Am. Chem. Soc.
82
,
1330
(
1960
).
20.
J.
Osugi
,
K.
Shimizu
, and
Y.
Tanaka
,
Proc. Jpn. Acad.
42
,
48
(
1966
).
21.
S. M.
Ku
,
J. Electrochem. Soc.
113
,
813
(
1966
).
22.
A. F.
Armington
,
J. Cryst. Growth
1
,
47
(
1967
).
23.
T. L.
Chu
and
A. E.
Hyslop
,
J. Appl. Phys.
43
,
276
(
1972
).
24.
D. J.
Stukel
,
Phys. Rev. B
1
,
3458
(
1970
).
25.
C.
Prasad
and
M.
Sahay
,
Phys. Status Solidi
154
,
201
(
1989
).
26.
M. P.
Surh
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
43
,
9126
(
1991
).
27.
G. L. W.
Hart
and
A.
Zunger
,
Phys. Rev. B
62
,
13522
(
2000
).
28.
K.
Bushick
 et al.,
Appl. Phys. Lett.
114
,
022101
(
2019
).
29.
Y.
Ge
,
W.
Wan
,
X.
Guo
, and
Y.
Liu
, e-print arXiv:1901.03947 (2019).
30.
J.
Buckeridge
and
D. O.
Scanlon
,
Phys. Rev. Mater.
3
,
51601
(
2019
).
31.
M.
Fox
,
Optical Properties of Solids
(
Oxford University Press
, 2004).
32.
I. Bravic and B. Monserrat, e-print arXiv:1904.11511 (2019).
33.
M.
Guemou
 et al.,
Physica B
407
,
1292
(
2012
).
34.
J. C.
Manifacier
,
J.
Gasiot
, and
J. P.
Fillard
,
J. Phys. E
9
,
1002
(
1976
).
35.
B. E. A.
Saleh
and
M. C.
Teich
,
Fundamentals of Photonics
(
John Wiley & Sons
,
2019
).
36.
W. L.
Bond
,
J. Appl. Phys.
36
,
1674
(
1965
).
37.
D. T. F.
Marple
,
J. Appl. Phys.
35
,
1241
(
1964
).
38.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
John Wiley & Sons
,
New York
,
1973
).
39.
M. A.
Hopcroft
 et al.,
J. Microelectromech. Syst.
19
,
229
(
2010
).
40.
O. A.
Bauchau
and
J. I.
Craig
,
Structural Analysis: With Applications to Aerospace Structures
(
Springer Science & Business Media
,
2009
).
41.
C.
Thomsen
,
H.
Grahn
,
H.
Maris
, and
J.
Tauc
,
Phys. Rev. B
34
,
4129
(
1986
).
42.
M.
Li
,
J. S.
Kang
, and
Y.
Hu
,
Rev. Sci. Instrum.
89
,
084901
(
2018
).
43.
J. S.
Kang
,
M.
Ke
, and
Y.
Hu
,
Nano Lett.
17
,
1431
(
2017
).
44.
Y.
Hu
,
L.
Zeng
,
A. J.
Minnich
,
M. S.
Dresselhaus
, and
G.
Chen
,
Nat. Nanotechnol.
10
,
701
(
2015
).
45.
J. S.
Kang
,
H.
Wu
,
M.
Li
, and
Y.
Hu
,
Nano Lett.
19
,
4941
(
2019
).
46.
C.
Kittel
,
Introduction to Solid State Physics
(
Wiley
,
New York
,
1976
).
47.
R. G.
Greene
 et al.,
Phys. Rev. Lett.
73
,
2476
(
1994
).
48.
F.
Tian
 et al.,
Appl. Phys. Lett.
114
,
131903
(
2019
).
49.
L.
Rayleigh
,
Proc. London Math. Soc.
s1
,
4
(
1885
).
50.
G. W.
Farnell
, “
Properties elastic surface waves
,” in
Physical Acoustic Principle Methods
, edited
W. P.
Mason
and
R. N.
Thurst
. (
Academic
,
New York
,
1970
), Vol.
VI
, pp.
109
166
.
51.
Y.
Hu
,
F.
Kuemmeth
,
C. M.
Lieber
, and
C. M.
Marcus
,
Nat. Nanotechnol.
7
,
47
(
2012
).
52.
J.
Rogers
,
A.
Maznev
, and
K.
Nelson
,
Annu. Rev. Mater. Sci.
30
,
117
(
2000
).
53.
T.
Lee
 et al.,
Phys. Rev. B
71
,
144106
(
2005
).
54.
P.
Hess
,
Phys. Today
55
(
3
),
42
(
2002
).
55.
A. A.
Maznev
and
A. G.
Every
,
J. Appl. Phys.
106
,
113531
(
2009
).
56.
W. A.
Brantley
,
J. Appl. Phys.
44
,
534
(
1973
).
57.
R.
Hill
,
Proc. Phys. Soc., London, Sect. A
65
,
349
(
1952
).
58.
P.
Giannozzi
 et al.,
J. Phys.: Condens. Matter
21
,
395502
(
2009
).
59.
P.
Giannozzi
 et al.,
J. Phys.: Condens. Matter
29
,
465901
(
2017
).
60.
We used the pseudopotentials B.pz-n-kjpaw_psl.0.1.UPF and As.pz-n-kjpaw_psl.0.2.UPF from the Quantum ESPRESSO pseudopotential data base (http://www.quantum-espresso.org/pseudopotentials).
61.
X.
Chen
 et al., e-print arXiv:1903.01668.
62.
S.
Li
 et al., e-print arXiv:1906.04101.
63.
T. H. K.
Barron
,
J. G.
Collins
, and
G. K.
White
,
Adv. Phys.
29
,
609
(
1980
).
64.
K.
Schelling
and
P.
Keblinski
,
Phys. Rev. B
68
,
035425
(
2003
).
65.
N.
Mounet
and
N.
Marzari
,
Phys. Rev. B
71
,
205214
(
2005
).
66.
T.
Tadano
 et al.,
J. Phys.: Condens. Matter
26
,
225402
(
2014
).
67.
M.
Li
,
J. S.
Kang
,
H.
Nguyen
,
H.
Wu
,
T.
Aoki
, and
Y.
Hu
,
Adv. Mater.
31
,
1901021
(
2019
).
68.
R. R.
Reeber
and
K.
Wang
,
J. Mater. Res.
15
,
40
(
2000
).
69.
J. S.
Blakemore
,
J. Appl. Phys.
53
,
R123
(
1982
).
70.
T.
Sato
 et al.,
Phys. Rev. B
65
,
092102
(
2002
).
71.
Z.
Li
and
R. C.
Bradt
,
J. Mater. Sci.
21
,
4366
(
1986
).
72.
M.
Born
and
K.
Huang
,
Dyanmical Theory of Crystal Lattices
(
Oxford University Press
,
1954
).
73.
V. I.
Koshchenko
 et al.,
Inorg. Mater.
17
,
1460
(
1981
).
74.
E.
Grüneisen
,
Ann. Phys.
344
,
257
(
1912
).
You do not currently have access to this content.