A fluid dynamic model for imbibition into closed-end, axisymmetric pores having diameters that change as a function of the pore depth is presented. Despite the fact that liquid invasion into nonbranched closed-end pores is characterized by a wealth of different transient and/or metastable nonequilibrium stages related to precursor film formation, we show that a simple hydraulic model accounting for geometry- and air compression-induced deviations from classical Lucas-Washburn dynamics precisely describes the imbibition dynamics except at the late stage. The model was validated by laser interferometry experiments with submillisecond temporal resolution. Imbibition of three simple liquids (isopropanol, ethanol, and hexane) into self-ordered anodic alumina membranes containing arrays of parallel closed-end nanopores characterized by slight conicity was studied. The model provides an improved description of nanoscale fluid dynamics and allows geometric characterization of nanoporous membranes by their imbibition kinetics accounting for the back pressure of the compressed gas. Thus, a precise calibration of porous membranes with simple liquids becomes possible, and changes in the mean pore diameter as a function of the pore depth can be assessed.

1.
P.
Guo
,
J.
Huang
,
Y.
Zhao
,
C. R.
Martin
,
R. N.
Zare
, and
M. A.
Moses
,
Small
14
,
1703493
(
2018
).
2.
Q.
Wang
and
R.
Chen
,
Nano Lett.
18
,
3096
(
2018
).
3.
J.
Buchheim
,
K.-P.
Schlichting
,
R. M.
Wyss
, and
H. G.
Park
,
ACS Nano
13
,
134
(
2019
).
4.
H.
Wang
,
X.
Hu
,
Z.
Ke
,
C. Z.
Du
,
L.
Zheng
,
C.
Wang
, and
Z.
Yuan
,
Nanoscale Res. Lett.
13
,
284
(
2018
).
5.
M. S. S. A.
Saraswathi
,
A.
Nagendran
, and
D.
Rana
,
J. Mater. Chem. A
7
,
8723
(
2019
).
6.
Z.
Wang
,
A.
Wu
,
L. C.
Ciacchi
, and
G.
Wei
,
Nanomaterials
8
,
65
(
2018
).
7.
P.
Huber
,
J. Phys.: Condens. Matter
27
,
103102
(
2015
).
8.
Y.
Yao
,
Y.
Suzuki
,
J.
Seiwert
,
M.
Steinhart
,
H.
Frey
,
H.-J.
Butt
, and
G.
Floudas
,
Macromolecules
50
,
8755
(
2017
).
9.
Y.
Yao
,
S.
Alexandris
,
F.
Henrich
,
G.
Auernhammer
,
M.
Steinhart
,
H.-J.
Butt
, and
G.
Floudas
,
J. Chem. Phys.
146
,
203320
(
2017
).
10.
X.
Zhu
,
J.
Hao
,
B.
Bao
,
Y.
Zhou
,
H.
Zhang
,
J.
Pang
,
Z.
Jiang
, and
L.
Jiang
,
Sci. Adv.
4
,
eaau1665
(
2018
).
11.
A.
Siria
,
M.-L.
Bocquet
, and
L.
Bocquet
,
Nat. Rev. Chem.
1
,
0091
(
2017
).
12.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
13.
W.
Lee
and
S.-J.
Park
,
Chem. Rev.
114
,
7487
(
2014
).
14.
M.
Steinhart
, in
Self-Assembled Nanomaterials II: Nanotubes
, Advances in Polymer Science Vol.
220
(
Springer International Publishing
,
2008
).
15.
J.
Martin
,
J.
Maiz
,
J.
Sacristan
, and
C.
Mijangos
,
Polymer
53
,
1149
(
2012
).
16.
R.
Urteaga
,
L. N.
Acquaroli
,
R. R.
Koropecki
,
A.
Santos
,
M.
Alba
,
J.
Pallarés
,
L. F.
Marsal
, and
C. L. A.
Berli
,
Langmuir
29
,
2784
(
2013
).
17.
R.
Urteaga
and
C. L. A.
Berli
, “
Nanoporous anodic alumina for optofluidic applications
,” in
Nanoporous Alumina
(
Springer International Publishing
,
2015
).
18.
E.
Elizalde
,
R.
Urteaga
,
R. R.
Koropecki
, and
C. L.
Berli
,
Phys. Rev. Lett.
112
,
134502
(
2014
).
19.
M.
Reyssat
,
L.
Courbin
,
E.
Reyssat
, and
H. A.
Stone
,
J. Fluid Mech.
615
,
335
(
2008
).
20.
M.
Reyssat
,
L. Y.
Sangne
,
E. A.
van Nierop
, and
H. A.
Stone
,
Europhys. Lett.
86
,
56002
(
2009
).
21.
D.
Erickson
,
D.
Li
, and
C.
Park
,
J. Colloid Interface Sci.
250
,
422
(
2002
).
22.
W. W.
Liou
,
Y.
Peng
, and
P. E.
Parker
,
J. Colloid Interface Sci.
333
,
389
(
2009
).
23.
V. N.
Phan
,
N.-T.
Nguyen
,
C.
Yang
,
P.
Joseph
,
L.
Djeghlaf
,
D.
Bourrier
, and
A.-M.
Gue
,
Langmuir
26
,
13251
(
2010
).
24.
M.
Radiom
,
W. K.
Chan
, and
C.
Yang
,
Microfluid. Nanofluid.
9
,
65
(
2010
).
25.
L. N.
Acquaroli
,
R.
Urteaga
,
C. L. A.
Berli
, and
R. R.
Koropecki
,
Langmuir
27
(
5
),
2067
(
2011
).
26.
C. L. A.
Berli
and
R.
Urteaga
,
Microfluid. Nanofluid.
17
(
6
),
1079
(
2014
).
27.
S.
Gruener
,
H. E.
Hermes
,
B.
Schillinger
,
S. U.
Egelhaaf
, and
P.
Huber
,
Colloid. Surf. A
496
,
13
27
(
2016
).
28.
29.
E. W.
Washburn
,
Phys. Rev.
17
,
273
(
1921
).
30.
C.
Eckstein
,
E.
Xifré-Pérez
,
M. P. i
Batalla
,
J.
Ferré-Borrull
, and
L. F.
Marsal
,
Langmuir
32
,
10467
(
2016
).
31.
L.
Landau
,
J.
Bell
,
M.
Kearsley
,
L.
Pitaevskii
,
E.
Lifshitz
, and
J. J.
Sykes
,
Electrodynamics of Continuous Media, Course of Theoretical Physics
(
Elsevier Science
,
2013
).
32.
H.
Masuda
,
F.
Hasegwa
, and
S.
Ono
,
J. Electrochem. Soc.
144
,
L127
(
1997
).
33.
M. T.
Postek
and
A. E.
Vladár
,
Scanning
35
,
355
(
2013
).
34.
D.
Ausserré
,
A. M.
Picard
, and
L.
Léger
,
Phys. Rev. Lett.
57
,
2671
(
1986
).
35.
L.
Léger
,
M.
Erman
,
A. M.
Guinet-Picard
,
D.
Ausserré
, and
C.
Strazielle
,
Phys. Rev. Lett.
60
,
2390
(
1988
).
36.
L.
Léger
and
J. F.
Joanny
,
Rep. Prog. Phys.
55
,
431
(
1992
).
37.
S.
Gruener
and
P.
Huber
,
Phys. Rev. Lett.
103
,
174501
(
2009
).
38.
L.
Bocquet
and
E.
Charlaix
,
Chem. Soc. Rev.
39
,
1073
(
2010
).
39.
S.
Gruener
,
T.
Hofmann
,
D.
Wallacher
,
A.
Kityk
, and
P.
Huber
,
Phys. Rev. E
79
,
067301
(
2009
).
40.
A.
Kusmin
,
S.
Grüner
,
A.
Henschel
,
O.
Holderer
,
J.
Allgaier
,
D.
Richter
, and
P.
Huber
,
J. Phys. Chem. Lett.
1
,
3116
(
2010
).
41.
O.
Vincent
,
A.
Szenicer
, and
A. D.
Stroock
,
Soft Matter
12
,
6656
(
2016
).
42.
B.-Y.
Cao
,
M.
Yang
, and
G.-J.
Hu
,
RSC Adv.
6
,
7553
(
2016
).

Supplementary Material

You do not currently have access to this content.