We report the modulation of electron and hole effective masses under biaxial strain in 4H-SiC and GaN on the basis of first-principles calculations including the spin–orbit interaction. While the electron effective masses are insensitive to the strain, the hole effective masses manifest significant changes under moderate tensile strain in both 4H-SiC and GaN: more than two times increase in the (0001) in-plane directions and one-tenth decrease in the out-of-plane. We explain such substantial changes in the hole effective masses in terms of strain-induced hybridization, crossing, and reordering of the heavy-hole and light-hole bands.

1.
M.
Ruff
,
H.
Mitlehner
, and
R.
Helbig
,
IEEE Trans. Electron Devices
41
,
1040
(
1994
).
2.
J. N.
Shenoy
,
J. A.
Cooper
, and
M. R.
Melloch
,
IEEE Electron Device Lett.
18
,
93
(
1997
).
3.
A. K.
Agarwal
,
J. B.
Casady
,
L. B.
Rowland
,
W. F.
Valek
,
M. H.
White
, and
C. D.
Brandt
,
IEEE Electron Device Lett.
18
,
586
(
1997
).
4.
T.
Kimoto
and
J. A.
Cooper
,
Fundamentals of Silicon Carbide Technology
(
Wiley
,
2014
).
5.
B. J.
Baliga
,
IEEE Electron Device Lett.
10
,
455
(
1989
).
6.
T.
Mimura
,
S.
Hiyamizu
,
T.
Fujii
, and
K.
Nanbu
,
Jpn. J. Appl. Phys., Part 2
19
,
L225
(
1980
).
7.
M.
Asif Khan
,
A.
Bhattarai
,
J. N.
Kuznia
, and
D. T.
Olson
,
Appl. Phys. Lett.
63
,
1214
(
1993
).
8.
A. D.
Hatmanto
and
K.
Kita
,
Appl. Phys. Express
11
,
011201
(
2018
).
9.
Y.
Sun
,
S. E.
Thompson
, and
T.
Nishida
,
J. Appl. Phys.
101
,
104503
(
2007
).
10.
M.
Azize
and
T.
Palacios
,
J. Appl. Phys.
108
,
023707
(
2010
).
11.
K.
Chokawa
and
K.
Shiraishi
,
Jpn. J. Appl. Phys., Part 1
57
,
071301
(
2018
).
12.
C. E.
Dreyer
,
A.
Janotti
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
102
,
142105
(
2013
).
13.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
14.
J.
Heyd
,
G. E.
Scuseria
, and
M.
Ernzerhof
,
J. Chem. Phys.
118
,
8207
(
2003
).
15.
A. V.
Krukau
,
O. A.
Vydrov
,
A. F.
Izmaylov
, and
G. E.
Scuseria
,
J. Chem. Phys.
125
,
224106
(
2006
).
16.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
17.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
18.
N. W.
Thibault
,
Am. Miner.
29
,
249
(
1944
).
19.
M.
Levinshtein
,
S.
Rumyantsev
, and
M.
Shur
,
Properties of Advanced Semiconductor Materials
(
Wiley-Interscience
,
2001
) Chap. I, p.
2
.
20.
W. J.
Choyke
,
D. R.
Hamilton
, and
L.
Patrick
,
Phys. Rev.
133
,
A1163
(
1964
).
21.
Y.
Hinuma
,
Y.
Kumagai
,
F.
Oba
, and
I.
Tanaka
,
Comput. Mater. Sci.
113
,
221
(
2016
).
22.
Y.
Hinuma
,
Y.
Kumagai
,
I.
Tanaka
, and
F.
Oba
,
Phys. Rev. Mater.
2
,
124603
(
2018
).
23.
M.
Nuruzzaman
,
M. A.
Islam
,
M. A.
Alam
,
M. A.
H. Shah
, and
A. M. M. T.
Karim
,
Int. J. Eng. Res. Appl.
5
,
48
(
2015
).
24.
A.
Polian
,
M.
Grimsditch
, and
I.
Grzegory
,
J. Appl. Phys.
79
,
3343
(
1996
).
25.
F.
Oba
and
Y.
Kumagai
,
Appl. Phys. Express
11
,
060101
(
2018
).
26.
A.
Grüneis
,
G.
Kresse
,
Y.
Hinuma
, and
F.
Oba
,
Phys. Rev. Lett.
112
,
096401
(
2014
).
27.
M.
Suzuki
and
T.
Uenoyama
,
Solid-State Electron.
41
,
271
(
1997
).
28.
C.
Persson
and
U.
Lindefelt
,
J. Appl. Phys.
82
,
5496
(
1997
).
29.
S.
Bloom
,
G.
Harbeke
,
E.
Meier
, and
I. B.
Ortenburger
,
Phys. Status Solidi B
66
,
161
(
1974
).
30.
Z. C.
Feng
,
SiC Power Materials
(
Springer
,
2010
), pp.
73
75
.
31.
W. R. L.
Lambrecht
,
S.
Limpijumnong
,
S. N.
Rashkeev
, and
B.
Segall
,
Phys. Status Solidi B
202
,
5
(
1997
).
32.
P.
Rinke
,
M.
Winkelnkemper
,
A.
Qteish
,
D.
Bimberg
,
J.
Neugebauer
, and
M.
Scheffler
,
Phys. Rev. B
77
,
075202
(
2008
).
33.
K.
Kim
,
W. R. L.
Lambrecht
,
B.
Segall
, and
M.
van Schilfgaarde
,
Phys. Rev. B
56
,
7363
(
1997
).
34.
N. T.
Son
,
P. N.
Hai
,
W. M.
Chen
,
C.
Hallin
,
B.
Monemar
, and
E.
Janzén
,
Phys. Rev. B
61
,
R10544
(
2000
).
35.
A. V.
Rodina
,
M.
Dietrich
,
A.
Göldner
,
L.
Eckey
,
A.
Hoffmann
,
A. L.
Efros
,
M.
Rosen
, and
B. K.
Meyer
,
Phys. Rev. B
64
,
115204
(
2001
).
36.
M.
Drechsler
,
D. M.
Hofmann
,
B. K.
Meyer
,
T.
Detchprohm
,
H.
Amano
, and
I.
Akasaki
,
Jpn. J. Appl. Phys., Part 2
34
,
L1178
(
1995
).
37.
L.
Elcoro
,
B.
Bradlyn
,
Z.
Wang
,
M. G.
Vergniory
,
J.
Cano
,
C.
Felser
,
B. A.
Bernevig
,
D.
Orobengoa
,
G.
de la Flor
, and
M. I.
Aroyo
,
J. Appl. Crystallogr.
50
,
1457
(
2017
).
38.

We have calculated the band structure along the ΓM path with 0.34% and 0.04% strain for 4H-SiC and GaN, under the conditions where the Fock-exchange mixing parameters of the HSE hybrid functional are 0.28 and 0.30, respectively. In these computational conditions, the bandgaps increase to 3.27 and 3.48 eV for 4H-SiC and GaN with no strain.

You do not currently have access to this content.