We present a two-layer design and experimental demonstration of a chip-based electron beam splitter working for electron energies up to 200 eV. Beam splitting arises from smoothly transforming the transverse microwave guiding potential from a single-well into a double-well, thereby generating two separated output beams. We discuss future structures for coherent electron beam splitting, which would pave the way for an electron interferometer on a chip.
References
1.
L.
De Broglie
, “Recherches sur la théorie des quanta
,” Ph.D. thesis (Migration-Université En cours D'affectation
, 1924
).2.
G. P.
Thomson
and A.
Reid
, Nature
119
, 890
(1927
).3.
C.
Davisson
and L.
Germer
, Proc. Natl. Acad. Sci. U. S. A.
14
, 317
(1928
).4.
I.
Bloch
, J.
Dalibard
, and W.
Zwerger
, Rev. Mod. Phys.
80
, 885
(2008
).5.
H.
Rauch
and S. A.
Werner
, Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement
(Oxford University Press
, USA
, 2015
), Vol. 12
.6.
T.
Juffmann
, A.
Milic
, M.
Müllneritsch
, P.
Asenbaum
, A.
Tsukernik
, J.
Tüxen
, M.
Mayor
, O.
Cheshnovsky
, and M.
Arndt
, Nat. Nanotechnol.
7
, 297
(2012
).7.
S.
Eibenberger
, S.
Gerlich
, M.
Arndt
, M.
Mayor
, and J.
Tüxen
, Phys. Chem. Chem. Phys.
15
, 14696
(2013
).8.
G.
Möllenstedt
and H.
Düker
, Naturwissenschaften
42
, 41
(1955
).9.
D.
Gabor
, Nature
161
, 777
(1948
).10.
11.
F.
Hasselbach
, Rep. Prog. Phys.
73
, 016101
(2009
).12.
D.
Meschede
, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics
(John Wiley & Sons
, 2017
).13.
W. P.
Putnam
and M. F.
Yanik
, Phys. Rev. A
80
, 040902
(2009
).14.
S.
Thomas
, C.
Kohstall
, P.
Kruit
, and P.
Hommelhoff
, Phys. Rev. A
90
, 053840
(2014
).15.
S.
Thomas
, J.
Hammer
, P.
Weber
, and P.
Hommelhoff
, Microsc. Microanal.
21
, 50
(2015
).16.
P.
Kruit
, R. G.
Hobbs
, C.-S.
Kim
, Y.
Yang
, V. R.
Manfrinato
, J.
Hammer
, S.
Thomas
, P.
Weber
, B.
Klopfer
, C.
Kohstall
et al., Ultramicroscopy
164
, 31
(2016
).17.
T.
Juffmann
, B. B.
Klopfer
, T. L.
Frankort
, P.
Haslinger
, and M. A.
Kasevich
, Nat. Commun.
7
, 12858
(2016
).18.
T.
Juffmann
, S. A.
Koppell
, B. B.
Klopfer
, C.
Ophus
, R. M.
Glaeser
, and M. A.
Kasevich
, Sci. Rep.
7
, 1699
(2017
).19.
J.
Hoffrogge
and P.
Hommelhoff
, New J. Phys.
13
, 095012
(2011
).20.
J.
Hoffrogge
, R.
Fröhlich
, M. A.
Kasevich
, and P.
Hommelhoff
, Phys. Rev. Lett.
106
, 193001
(2011
).21.
J.
Hammer
, J.
Hoffrogge
, S.
Heinrich
, and P.
Hommelhoff
, Phys. Rev. Appl.
2
, 044015
(2014
).22.
J.
Hammer
, S.
Thomas
, P.
Weber
, and P.
Hommelhoff
, Phys. Rev. Lett.
114
, 254801
(2015
).23.
I.
Müllerová
and M.
Lenc
, in Electron Microbeam Analysis
(Springer
, 1992
), pp. 173
–177
.24.
E.
Bauer
, Rep. Prog. Phys.
57
, 895
(1994
).25.
R. M.
Tromp
, M.
Mankos
, M.
Reuter
, A.
Ellis
, and M.
Copel
, Surf. Rev. Lett.
5
, 1189
(1998
).26.
R. M.
Tromp
, IBM J. Res. Dev.
44
, 503
(2000
).27.
H.-W.
Fink
, W.
Stocker
, and H.
Schmid
, Phys. Rev. Lett.
65
, 1204
(1990
).28.
H.-W.
Fink
, H.
Schmid
, H. J.
Kreuzer
, and A.
Wierzbicki
, Phys. Rev. Lett.
67
, 1543
(1991
).29.
J.-N.
Longchamp
, T.
Latychevskaia
, C.
Escher
, and H.-W.
Fink
, Appl. Phys. Lett.
101
, 113117
(2012
).30.
J.-N.
Longchamp
, T.
Latychevskaia
, C.
Escher
, and H.-W.
Fink
, Appl. Phys. Lett.
107
, 133101
(2015
).31.
W.
Paul
and H.
Steinwedel
, Z. Naturforsch. A
8
, 448
(1953
).32.
F.
Major
, V.
Gheorghe
, and G.
Werth
, Charged Particle Traps
(Springer
, Heidelberg
, 2005
).33.
H. G.
Dehmelt
, in Advances in Atomic and Molecular Physics
(Elsevier
, 1968
), Vol. 3
, pp. 53
–72
.34.
P. W.
Erdman
and E. C.
Zipf
, Rev. Sci. Instrum.
53
, 225
(1982
).35.
J. H.
Wesenberg
, Phys. Rev. A
78
, 063410
(2008
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.