We present a two-layer design and experimental demonstration of a chip-based electron beam splitter working for electron energies up to 200 eV. Beam splitting arises from smoothly transforming the transverse microwave guiding potential from a single-well into a double-well, thereby generating two separated output beams. We discuss future structures for coherent electron beam splitting, which would pave the way for an electron interferometer on a chip.

1.
L.
De Broglie
, “
Recherches sur la théorie des quanta
,” Ph.D. thesis (
Migration-Université En cours D'affectation
,
1924
).
2.
G. P.
Thomson
and
A.
Reid
,
Nature
119
,
890
(
1927
).
3.
C.
Davisson
and
L.
Germer
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
317
(
1928
).
4.
I.
Bloch
,
J.
Dalibard
, and
W.
Zwerger
,
Rev. Mod. Phys.
80
,
885
(
2008
).
5.
H.
Rauch
and
S. A.
Werner
,
Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement
(
Oxford University Press
,
USA
,
2015
), Vol.
12
.
6.
T.
Juffmann
,
A.
Milic
,
M.
Müllneritsch
,
P.
Asenbaum
,
A.
Tsukernik
,
J.
Tüxen
,
M.
Mayor
,
O.
Cheshnovsky
, and
M.
Arndt
,
Nat. Nanotechnol.
7
,
297
(
2012
).
7.
S.
Eibenberger
,
S.
Gerlich
,
M.
Arndt
,
M.
Mayor
, and
J.
Tüxen
,
Phys. Chem. Chem. Phys.
15
,
14696
(
2013
).
8.
G.
Möllenstedt
and
H.
Düker
,
Naturwissenschaften
42
,
41
(
1955
).
10.
A.
Tonomura
, in
Electron Holography
(
Springer
,
1999
), pp.
29
49
.
11.
F.
Hasselbach
,
Rep. Prog. Phys.
73
,
016101
(
2009
).
12.
D.
Meschede
,
Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics
(
John Wiley & Sons
,
2017
).
13.
W. P.
Putnam
and
M. F.
Yanik
,
Phys. Rev. A
80
,
040902
(
2009
).
14.
S.
Thomas
,
C.
Kohstall
,
P.
Kruit
, and
P.
Hommelhoff
,
Phys. Rev. A
90
,
053840
(
2014
).
15.
S.
Thomas
,
J.
Hammer
,
P.
Weber
, and
P.
Hommelhoff
,
Microsc. Microanal.
21
,
50
(
2015
).
16.
P.
Kruit
,
R. G.
Hobbs
,
C.-S.
Kim
,
Y.
Yang
,
V. R.
Manfrinato
,
J.
Hammer
,
S.
Thomas
,
P.
Weber
,
B.
Klopfer
,
C.
Kohstall
 et al.,
Ultramicroscopy
164
,
31
(
2016
).
17.
T.
Juffmann
,
B. B.
Klopfer
,
T. L.
Frankort
,
P.
Haslinger
, and
M. A.
Kasevich
,
Nat. Commun.
7
,
12858
(
2016
).
18.
T.
Juffmann
,
S. A.
Koppell
,
B. B.
Klopfer
,
C.
Ophus
,
R. M.
Glaeser
, and
M. A.
Kasevich
,
Sci. Rep.
7
,
1699
(
2017
).
19.
J.
Hoffrogge
and
P.
Hommelhoff
,
New J. Phys.
13
,
095012
(
2011
).
20.
J.
Hoffrogge
,
R.
Fröhlich
,
M. A.
Kasevich
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
106
,
193001
(
2011
).
21.
J.
Hammer
,
J.
Hoffrogge
,
S.
Heinrich
, and
P.
Hommelhoff
,
Phys. Rev. Appl.
2
,
044015
(
2014
).
22.
J.
Hammer
,
S.
Thomas
,
P.
Weber
, and
P.
Hommelhoff
,
Phys. Rev. Lett.
114
,
254801
(
2015
).
23.
I.
Müllerová
and
M.
Lenc
, in
Electron Microbeam Analysis
(
Springer
,
1992
), pp.
173
177
.
24.
25.
R. M.
Tromp
,
M.
Mankos
,
M.
Reuter
,
A.
Ellis
, and
M.
Copel
,
Surf. Rev. Lett.
5
,
1189
(
1998
).
26.
R. M.
Tromp
,
IBM J. Res. Dev.
44
,
503
(
2000
).
27.
H.-W.
Fink
,
W.
Stocker
, and
H.
Schmid
,
Phys. Rev. Lett.
65
,
1204
(
1990
).
28.
H.-W.
Fink
,
H.
Schmid
,
H. J.
Kreuzer
, and
A.
Wierzbicki
,
Phys. Rev. Lett.
67
,
1543
(
1991
).
29.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Appl. Phys. Lett.
101
,
113117
(
2012
).
30.
J.-N.
Longchamp
,
T.
Latychevskaia
,
C.
Escher
, and
H.-W.
Fink
,
Appl. Phys. Lett.
107
,
133101
(
2015
).
31.
W.
Paul
and
H.
Steinwedel
,
Z. Naturforsch. A
8
,
448
(
1953
).
32.
F.
Major
,
V.
Gheorghe
, and
G.
Werth
,
Charged Particle Traps
(
Springer
,
Heidelberg
,
2005
).
33.
H. G.
Dehmelt
, in
Advances in Atomic and Molecular Physics
(
Elsevier
,
1968
), Vol.
3
, pp.
53
72
.
34.
P. W.
Erdman
and
E. C.
Zipf
,
Rev. Sci. Instrum.
53
,
225
(
1982
).
35.
J. H.
Wesenberg
,
Phys. Rev. A
78
,
063410
(
2008
).
You do not currently have access to this content.