Surfaces integrated with controllable wetting behaviors are playing an increasingly important role in a diverse range of applications. But their application in heat transfer is seldom studied. In this work, the excellent performance of the smart-wettability-control surface in boiling heat transfer was investigated experimentally. The experimental results demonstrated that the smart-wettability-control surface integrated perfectly the advantages of hydrophobic (better heat transfer coefficient) and hydrophilic surfaces (higher critical heat flux). We attribute this enhancement to the smart control of nucleation sites and three-phase contact line movement, which could be supported by the visualization image. This enhancement strategy can be used to improve the capacity of heat transfer devices.

1.
Leeladhar
,
P.
Raturi
, and
J. P.
Singh
,
Sci. Rep.
8
(
1
),
3687
(
2018
).
2.
G. J.
Snyder
and
E. S.
Toberer
,
Nat. Mater.
7
,
105
(
2008
).
3.
C.
García Núñez
,
L.
Manjakkal
, and
R.
Dahiya
,
npj Flexible Electron.
3
(
1
),
1
(
2019
).
4.
W.
Zhang
,
X.
Wang
,
Y.
Wang
,
G.
Yang
,
C.
Gu
,
W.
Zheng
,
Y. M.
Zhang
,
M.
Li
, and
S. X. A.
Zhang
,
Nat. Commun.
10
(
1
),
1559
(
2019
).
5.
R. A.
Taylor
,
P. E.
Phelan
,
T.
Otanicar
,
R. S.
Prasher
, and
B. E.
Phelan
,
Int. Commun. Heat Mass
39
(
10
),
1467
(
2012
).
6.
K. H.
Chu
,
R.
Enright
, and
E. N.
Wang
,
Appl. Phys. Lett.
100
(
24
),
241603
(
2012
).
7.
B.
Feng
,
K.
Weaver
, and
G. P.
Peterson
,
Appl. Phys. Lett.
100
(
5
),
053120
(
2012
).
8.
A. R.
Betz
,
J.
Xu
,
H.
Qiu
, and
D.
Attinger
,
Appl. Phys. Lett.
97
(
14
),
141909
(
2010
).
9.
T.
Wang
,
Y. Y.
Jiang
,
H. C.
Jiang
,
C.
Guo
,
C. H.
Guo
,
D. W.
Tang
, and
L. J.
Rong
,
Appl. Phys. Lett.
107
(
2
),
023904
(
2015
).
10.
H. Y.
Kim
,
Y. G.
Kim
, and
B. H.
Kang
,
Int. J. Heat Mass Transfer
47
(
12
),
2831
(
2004
).
11.
A.
Sur
,
Y.
Lu
,
C.
Pascente
,
P.
Ruchhoeft
, and
D.
Liu
,
Int. J. Heat Mass Transfer
120
,
202
(
2018
).
12.
W. T.
Wu
,
Y. M.
Yang
, and
J. R.
Maa
,
Exp. Therm. Fluid Sci.
18
(
3
),
195
(
1998
).
13.
T.
Inoue
and
M.
Monde
,
Int. J. Heat Mass Transfer
55
(
13
),
3395
(
2012
).
14.
M. A. C.
Stuart
,
W. T. S.
Huck
,
J.
Genzer
,
M.
Müller
,
C.
Ober
,
M.
Stamm
,
G. B.
Sukhorukov
,
I.
Szleifer
,
V. V.
Tsukruk
,
M.
Urban
,
F.
Winnik
,
S.
Zauscher
,
I.
Luzinov
, and
S.
Minko
,
Nat. Mater.
9
,
101
(
2010
).
15.
F.
Guo
and
Z.
Guo
,
RSC Adv.
6
(
43
),
36623
(
2016
).
16.
B.
Bourdon
,
R.
Rioboo
,
M.
Marengo
,
E.
Gosselin
, and
J.
De Coninck
,
Langmuir
28
(
2
),
1618
(
2012
).
17.
C. C.
Hsu
and
P. H.
Chen
,
Int. J. Heat Mass Transfer
55
(
13–14
),
3713
(
2012
).
18.
E.
Forrest
,
E.
Williamson
,
J.
Buongiorno
,
L. W.
Hu
,
M.
Rubner
, and
R.
Cohen
,
Int. J. Heat Mass Transfer
53
(
1
),
58
(
2010
).
19.
L.
Zhang
,
T.
Wang
,
Y.
Jiang
,
S.
Kim
, and
C.
Guo
,
Int. J. Heat Mass Transfer
122
,
775
(
2018
).
20.
H.
Jo
,
S.
Kim
,
H. S.
Park
, and
M. H.
Kim
,
Int. J. Multiphase Flow
62
,
101
(
2014
).
21.
R.
Bertossi
,
N.
Caney
,
J. A.
Gruss
, and
O.
Poncelet
,
Appl. Therm. Eng.
77
,
121
(
2015
).
22.
J. M.
Kim
,
D. I.
Yu
,
H. S.
Park
,
K.
Moriyama
, and
M. H.
Kim
,
Int. J. Heat Mass Transfer
109
,
231
(
2017
).
23.
Y.
Takata
,
S.
Hidaka
,
M.
Masuda
, and
T.
Ito
,
Int. J. Energy Res.
27
(
2
),
111
(
2003
).
24.
M.
Yamada
,
B.
Shen
,
T.
Imamura
,
S.
Hidaka
,
M.
Kohno
,
K.
Takahashi
, and
Y.
Takata
,
Int. J. Heat Mass Transfer
115
,
753
(
2017
).
25.
L.
Zhang
and
M.
Shoji
,
Int. J. Heat Mass Transfer
46
(
3
),
513
(
2003
).
26.
Y.
Nam
,
J.
Wu
,
G.
Warrier
, and
Y. S.
Ju
,
J. Heat Transfer
131
(
12
),
121004
(
2009
).
27.
S. H.
Kim
,
G. C.
Lee
,
J. Y.
Kang
,
K.
Moriyama
,
H. S.
Park
, and
M. H.
Kim
,
Int. J. Heat Mass Transfer
102
,
756
(
2016
).
28.
C.
Gerardi
,
J.
Buongiorno
,
L. W.
Hu
, and
T.
McKrell
,
Int. J. Heat Mass Transfer
53
(
19–20
),
4185
(
2010
).

Supplementary Material

You do not currently have access to this content.