Relaxor-based ferroelectric crystals of lead magnesium niobate-lead titanate (PMN-PT) are attracting great attention due to their prominent piezoelectric properties. Moreover, an enhancement of the integral properties requires the deep understanding of domain kinetics and domain structure evolution for application of the domain engineering techniques in relaxor-PT materials. Here, we demonstrate the results of studying the domain structure evolution by direct optical imaging during polarization reversal in [111]-oriented rhombohedral PMN-PT single crystals. Three domain types involved in the switching process have been revealed. The following consequent stages of the domain structure evolution have been separated: (I) nucleation and growth of a-domains and 2a-CDW and (II) nucleation and growth of c-domains. The undesirable effect of the partial backswitching during the electric field decrease was attributed to the clamped switching conditions.

1.
D. A.
Ciubotariu
,
I. A.
Ivan
,
C.
Clévy
, and
P.
Lutz
,
Sens. Actuators A Phys.
252
,
242
(
2016
).
2.
P. A.
Wlodkowski
,
K.
Deng
, and
M.
Kahn
,
Sens. Actuators A Phys.
90
,
125
(
2001
).
3.
S.
Hur
,
S. Q.
Lee
, and
H. S.
Choi
,
J. Mech. Sci. Technol.
24
,
181
(
2010
).
4.
Q.
Zhou
,
K. H.
Lam
,
H.
Zheng
,
W.
Qiu
, and
K. K.
Shung
,
Prog. Mater. Sci.
66
,
87
(
2014
).
5.
G. T.
Hwang
,
H.
Park
,
J. H.
Lee
,
S.
Oh
,
K.
Il Park
,
M.
Byun
,
H.
Park
,
G.
Ahn
,
C. K.
Jeong
,
K.
No
,
H.
Kwon
,
S. G.
Lee
,
B.
Joung
, and
K. J.
Lee
,
Adv. Mater.
26
,
4880
(
2014
).
6.
Z.
Yang
and
J.
Zu
,
Energy Convers. Manage.
122
,
321
(
2016
).
7.
C.
Sun
,
L.
Qin
,
F.
Li
, and
Q. M.
Wang
,
J. Intell. Mater. Syst. Struct.
20
,
559
(
2009
).
8.
K.
Ren
,
Y.
Liu
,
X.
Geng
,
H. F.
Hofmann
, and
Q. M.
Zhang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
53
,
631
(
2006
).
9.
S.
Zhang
and
F.
Li
,
J. Appl. Phys.
111
,
031301
(
2012
).
10.
V. Y.
Shur
,
A. R.
Akhmatkhanov
, and
I. S.
Baturin
,
Appl. Phys. Rev.
2
,
040604
(
2015
).
11.
V. Ya.
Shur
, in
Advanced Piezoelectric Materials
, edited by
K.
Uchino
, 2nd ed. (
Elsevier
,
2017
), pp.
235
270
.
12.
V. Ya.
Shur
,
E. L.
Rumyantsev
,
E. V.
Nikolaeva
,
E. I.
Shishkin
,
R. G.
Batchko
,
M. M.
Fejer
, and
R. L.
Byer
,
Ferroelectrics
257
,
191
(
2001
).
13.
D.
Lin
,
S.
Zhang
,
Z.
Li
,
F.
Li
,
Z.
Xu
,
S.
Wada
,
J.
Luo
, and
T. R.
Shrout
,
J. Appl. Phys.
110
,
084110
(
2011
).
14.
C.
Thiele
,
K.
Dörr
,
O.
Bilani
,
J.
Rödel
, and
L.
Schultz
,
Phys. Rev. B
75
,
054408
(
2007
).
15.
S.
Zhang
,
Y. G.
Zhao
,
P. S.
Li
,
J. J.
Yang
,
S.
Rizwan
,
J. X.
Zhang
,
J.
Seidel
,
T. L.
Qu
,
Y. J.
Yang
,
Z. L.
Luo
,
Q.
He
,
T.
Zou
,
Q. P.
Chen
,
J. W.
Wang
,
L. F.
Yang
,
Y.
Sun
,
Y. Z.
Wu
,
X.
Xiao
,
X. F.
Jin
,
J.
Huang
,
C.
Gao
,
X. F.
Han
, and
R.
Ramesh
,
Phys. Rev. Lett.
108
,
137203
(
2012
).
16.
W.
Liang
,
F.
Hu
,
J.
Zhang
,
H.
Kuang
,
J.
Li
,
J.
Xiong
,
K.
Qiao
,
J.
Wang
,
J.
Sun
, and
B.
Shen
,
Nanoscale
11
,
246
(
2019
).
17.
F.
Jona
and
G.
Shirane
,
Ferroelectric Crystals
(
Pergamon Press
,
Oxford
,
1962
).
18.
M.
Lines
and
A.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Clarendon Press
,
Oxford
,
1977
).
19.
A. D.
Ushakov
,
A. A.
Esin
,
A. R.
Akhmatkhanov
,
Q.
Hu
,
X.
Liu
,
Y.
Zhao
,
X.
Wei
, and
V. Ya.
Shur
,
Appl. Phys. Lett.
113
,
112902
(
2018
).
20.
H.
Luo
,
G.
Xu
,
H.
Xu
,
P.
Wang
, and
Z.
Yin
,
Jpn. J. Appl. Phys., Part 1
39
,
5581
(
2000
).
21.
F.
Li
,
L.
Jin
,
Z.
Xu
, and
Z.
Guo
,
Rev. Sci. Instrum.
80
,
085106
(
2009
).
22.
V. Y.
Shur
,
A. A.
Esin
,
M. A.
Alam
, and
A. R.
Akhmatkhanov
,
Appl. Phys. Lett.
111
,
152907
(
2017
).
23.
A. A.
Esin
,
A. R.
Akhmatkhanov
, and
V. Ya.
Shur
,
Appl. Phys. Lett.
114
,
092901
(
2019
).
24.
A. K.
Tagantsev
,
L. E.
Cross
, and
J.
Fousek
,
Domains in Ferroic Crystals and Thin Films
(
Springer
New York, New York
,
2010
).
25.
J.
Erhart
and
W.
Cao
,
Ferroelectrics
426
,
13
(
2012
).
26.
P. S.
Bednyakov
,
B. I.
Sturman
,
T.
Sluka
,
A. K.
Tagantsev
, and
P. V.
Yudin
,
npj Comput. Mater.
4
,
65
(
2018
).

Supplementary Material

You do not currently have access to this content.