The generation of ultrasonic surface waves with a photoacoustic-laser-source has become useful for the noncontact nondestructive testing and evaluation (NDT&E) of materials and structures. In this work, a hybrid ultrasound based NDT&E method is proposed based on the photoacoustic-laser-source as a noncontact Lamb wave generator by incorporating a line-arrayed patterned candle soot nanoparticle-polydimethylsiloxane (CSNPs-PDMS) patch as the signal amplifier and with a narrow bandwidth. The CSNP-PDMS composite has been investigated as the functional patch for its laser energy absorption efficiency, fast thermal diffusion, and large thermoelastic expansion capabilities. The signal amplitude (in mW) from the CSNP-PDMS patch exhibits 2.3 times higher amplitude than the no patch condition and a narrower bandwidth than other conditions. Furthermore, improvement in the sensitivity is also achieved through the selection of the aluminum nitride sensing system. The overall combination of the Lamb wave generation and receiver-sensing system in this study is found to be very promising for a broad range of noncontact NDT&E applications.

1.
S.
Kenderian
,
B. B.
Djordjevic
, and
R. E.
Green
,
J. Acoust. Soc. Am.
113
,
261
(
2003
).
2.
M. F.
Hamilton
,
V. G.
Mikhalevich
,
P.
Hess
,
E. A.
Zabolotskaya
,
E. Y.
Knight
, and
A.
Lomonosov
,
J. Acoust. Soc. Am.
105
,
2093
(
2002
).
3.
S.
Choi
and
K. Y.
Jhang
,
NDT&E Int.
57
,
1
(
2013
).
4.
C.
Cosenza
,
S.
Kenderian
,
B. B.
Djordjevic
,
R. E.
Green
, and
A.
Pasta
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
147
(
2007
).
5.
S.
Dixon
,
S. E.
Burrows
,
B.
Dutton
, and
Y.
Fan
,
Ultrasonics
51
,
7
(
2011
).
6.
N.
Hosoya
,
R.
Umino
,
A.
Kanda
,
I.
Kajiwara
, and
A.
Yoshinaga
,
J. Vib. Control
24
,
1
(
2017
).
7.
H.
Kim
,
K.
Jhang
,
M.
Shin
, and
J.
Kim
,
NDT&E Int.
39
,
312
(
2006
).
8.
D.
Royer
and
E.
Dieulesaint
,
J. Appl. Phys.
56
,
2507
(
1984
).
9.
J.-H.
Lee
and
S.-J.
Lee
,
NDT&E Int.
42
,
222
(
2009
).
10.
A. D. W.
Mckie
,
J. W.
Wagner
,
J. B.
Spicer
, and
C. M.
Penney
,
Ultrasonics
27
,
323
(
1989
).
11.
J.
Huang
,
S.
Krishnaswamy
, and
J. D.
Achenbach
,
Ultrason. Symp.
1051
,
537
(
1991
).
12.
T. W.
Murray
,
J. B.
Deaton
, and
J. W.
Wagner
,
Ultrasonics
34
,
69
(
1996
).
13.
A.
Harata
,
H.
Nishimura
, and
T.
Sawada
,
Appl. Phys. Lett.
57
,
132
(
1990
).
14.
H.
Nishino
,
Y.
Tsukahara
,
Y.
Nagata
,
T.
Koda
, and
K.
Yamanaka
,
Appl. Phys. Lett.
62
,
2036
(
1993
).
15.
H.
Nakano
and
S.
Nagai
,
Ultrasonics
29
,
230
(
1991
).
16.
W. Y.
Chang
,
W.
Huang
,
J.
Kim
,
S.
Li
, and
X.
Jiang
,
Appl. Phys. Lett.
107
,
161903
(
2015
).
17.
J. E.
Michaels
,
Smart Mater. Struct.
17
,
1
(
2008
).
18.
H.
Lee
,
H.
Sohn
,
S.
Yang
, and
J.
Yang
,
Smart Mater. Struct.
23
,
65008
(
2014
).
19.
T.
Kim
,
J.
Kim
, and
X.
Jiang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
65
,
1444
(
2018
).
20.
T.
Kim
,
J.
Kim
, and
X.
Jiang
,
Proc. SPIE 10169
,
1
(
2017
).
21.
Y.
Sohn
and
S.
Krishnaswamy
,
J. Acoust. Soc. Am.
115
,
172
(
2004
).
22.
K. C.
Baldwin
,
T. P.
Berndt
, and
M. J.
Ehrlich
,
Ultrasonics
37
,
329
(
1999
).
23.
T.
Kim
,
J.
Kim
,
R.
Dalmau
,
R.
Schlesser
,
E.
Preble
, and
X.
Jiang
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
62
,
1880
(
2015
).
24.
S. J.
Zhang
,
E.
Alberta
,
R. E.
Eitel
,
P. W.
Rehrig
,
W.
Hackenberger
,
C. A.
Randall
, and
T. R.
Shrout
,
Proc. SPIE
5761
,
279
(
2005
).
25.
W. J.
Staszewski
,
B. C.
Lee
,
L.
Mallet
, and
F.
Scarpa
,
Smart Mater. Struct.
13
,
251
(
2004
).
You do not currently have access to this content.