Large skyrmion bubbles in confined geometries of various sizes and shapes are investigated, typically in the range of several micrometers. Two fundamentally different cases are studied to address the role of dipole-dipole interactions: (I) when there is no magnetic material present outside the small geometries and (II) when the geometries are embedded in films with a uniform magnetization. It is found that the preferential position of the skyrmion bubbles can be controlled by the geometrical shape, which turns out to be a stronger influence than local variations in material parameters. In addition, independent switching of the direction of the magnetization outside the small geometries can be used to further manipulate these preferential positions, in particular with respect to the edges. We show by numerical calculations that the observed interactions between the skyrmion bubbles and structure edge, including the overall positioning of the bubbles, can be explained by considering only dipole-dipole interactions.

1.
J.
Sampaio
,
V.
Cros
,
S.
Rohart
,
A.
Thiaville
, and
A.
Fert
, “
Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
,”
Nat. Nanotechnol.
8
,
839
844
(
2013
).
2.
A.
Fert
,
V.
Cros
, and
J.
Sampaio
, “
Skyrmions on the track
,”
Nat. Nanotechnol.
8
,
152
156
(
2013
).
3.
R.
Tomasello
,
E.
Martinez
,
R.
Zivieri
,
L.
Torres
,
M.
Carpentieri
, and
G.
Finocchio
, “
A strategy for the design of skyrmion racetrack memories
,”
Sci. Rep.
4
,
6784
(
2014
).
4.
O.
Boulle
,
J.
Vogel
,
H.
Yang
,
S.
Pizzini
,
D.
de Souza Chaves
,
A.
Locatelli
,
T. O.
Mente
,
A.
Sala
,
L. D.
Buda-Prejbeanu
,
O.
Klein
,
M.
Belmeguenai
,
Y.
Roussign
,
A.
Stashkevich
,
S. M.
Chrif
,
L.
Aballe
,
M.
Foerster
,
M.
Chshiev
,
S.
Auffret
,
I. M.
Miron
, and
G.
Gaudin
, “
Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
,”
Nat. Nanotechnol.
11
,
449
(
2016
).
5.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weingand
,
P.
Agrawal
,
I.
Lemesh
,
M.-A.
Mawass
,
P.
Fischer
,
M.
Kläui
, and
G. S. D.
Beach
, “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
506
(
2016
).
6.
H.
Du
,
R.
Che
,
L.
Kong
,
X.
Zhao
,
C.
Jin
,
C.
Wang
,
J.
Yang
,
W.
Ning
,
R.
Li
,
C.
Jin
,
X.
Chen
,
J.
Zang
,
Y.
Zhang
, and
M.
Tian
, “
Edge-mediated skyrmion chain and its collective dynamics in a confined geometry
,”
Nat. Commun.
6
,
8504
(
2015
).
7.
J.
Iwasaki
,
M.
Mochizuki
, and
N.
Nagaosa
, “
Current-induced skyrmion dynamics in constricted geometries
,”
Nat. Nanotechnol.
8
,
742
(
2013
).
8.
A.
Fert
,
N.
Reyren
, and
V.
Cros
, “
Magnetic skyrmions: Advances in physics and potential applications
,”
Nat. Rev. Mater.
2
,
17031
(
2017
).
9.
S.
Rohart
and
A.
Thiaville
, “
Skyrmion confinement in ultrathin film nanostructures in the presence of dzyaloshinskii-moriya interaction
,”
Phys. Rev. B
88
,
184422
(
2013
).
10.
S. A.
Meynell
,
M. N.
Wilson
,
H.
Fritzsche
,
A. N.
Bogdanov
, and
T. L.
Monchesky
, “
Surface twist instabilities and skyrmion states in chiral ferromagnets
,”
Phys. Rev. B
90
,
014406
(
2014
).
11.
W.
Jiang
,
X.
Zhang
,
G.
Yu
,
W.
Zhang
,
X.
Wang
,
M. B.
Jungfleisch
,
J. E.
Pearson
,
X.
Cheng
,
O.
Heinonen
,
K. L.
Wang
,
Y.
Zhou
,
A.
Hoffmann
, and
S. G.
te Velthuis
, “
Direct observation of the skyrmion hall effect
,”
Nat. Phys.
13
,
162
169
(
2017
).
12.
C.
Moreau-Luchaire
,
C.
Moutafis
,
N.
Reyren
,
J.
Sampaio
,
C.
Vaz
,
N. V.
Horne
,
K.
Bouzehouane
,
K.
Garcia
,
C.
Deranlot
,
P.
Warnicke
,
P.
Wohlhüter
,
J.-M.
George
,
M.
Weigand
,
J.
Raabe
,
V.
Cros
, and
A.
Fert
, “
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
,”
Nat. Nanotechnol.
11
,
444
448
(
2016
).
13.
M.
Schott
,
A.
Bernand-Mantel
,
L.
Ranno
,
S.
Pizzini
,
J.
Vogel
,
H.
Béa
,
C.
Baraduc
,
S.
Auffret
,
G.
Gaudin
, and
D.
Givord
, “
The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an electric field
,”
Nano Lett.
17
,
3006
3012
(
2017
).
14.
R.
Tolley
,
S.
Montoya
, and
E.
Fullerton
, “
Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films
,”
Phys. Rev. Mater.
2
(
4
),
044404
(
2018
).
15.
F.
Ummelen
,
T.
Wijkamp
,
T.
Lichtenberg
,
R.
Duine
,
B.
Koopmans
,
H.
Swagten
, and
R.
Lavrijsen
, “
Anomalous direction for skyrmion bubble motion
,” preprint arXiv:1807.07365 (
2018
).
16.
S. H.
Lee
,
F. Q.
Zhu
,
C. L.
Chien
, and
N.
Marković
, “
Effect of geometry on magnetic domain structure in Ni wires with perpendicular anisotropy: A magnetic force microscopy study
,”
Phys. Rev. B
77
,
132408
(
2008
).
17.
R.
Juge
,
S.-G.
Je
,
D.
de Souza Chaves
,
S.
Pizzini
,
L. D.
Buda-Prejbeanu
,
L.
Aballe
,
M.
Foerster
,
A.
Locatelli
,
T. O.
Mente
,
A.
Sala
,
F.
Maccherozzi
,
S. S.
Dhesi
,
S.
Auffret
,
E.
Gautier
,
G.
Gaudin
,
J.
Vogel
, and
O.
Boulle
, “
Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder
,”
J. Magn. Magn. Mater.
455
,
3
8
(
2018
).
18.
K.
Zeissler
,
M.
Mruczkiewicz
,
S.
Finizio
,
J.
Raabe
,
P.
Shepley
,
A. V.
S
,
S.
Nikitov
,
K.
Fallon
,
S.
McFadzean
,
S.
McVitie
,
T.
Moor
,
G.
Burnell
, and
C.
Marrows
, “
Pinning hysteresis field dependent diameter evolution skyrmions Pt/Co/Ir superlattice stacks
,”
Sci. Rep.
7
(
1
),
15125
(
2017
).
19.
A. P.
Malozemoff
and
J. C.
Slonczewski
,
Magnetic Domain Walls in Bubble Materials
, Applied Solid State Science (
Academic Press
,
New York, NY
,
1979
).

Supplementary Material

You do not currently have access to this content.