Nanophotonic circuitry and superconducting nanowires have been successfully combined for detecting single photons, propagating in an integrated photonic circuit, with high efficiency and low noise and timing uncertainty. Waveguide-integrated superconducting nanowire single-photon detectors (SNSPDs) can nowadays be engineered to achieve subnanosecond recovery times and can potentially be adopted for applications requiring Gcps count rates. However, particular attention shall be paid to such an extreme count rate regime since artifacts in the detector functionality emerge. In particular, a count-rate dependent detection efficiency has been encountered that can compromise the accuracy of quantum detector tomography experiments. Here, we investigate the response of waveguide-integrated SNSPDs at high photon flux and identify the presence of parasitic currents due to the accumulation of charge in the readout electronics to cause the above-mentioned artifact in the detection efficiency. Our approach allows us to determine the maximum photon count rate at which the detector can be operated without adverse effects. Our findings are particularly important to avoid artifacts when applying SNSPDs for quantum tomography.

1.
G. N.
Gol'tsman
,
O.
Okunev
,
G.
Chulkova
,
A.
Lipatov
,
A.
Semenov
,
K.
Smirnov
,
B.
Voronov
,
A.
Dzardanov
,
C.
Williams
, and
R.
Sobolewski
,
Appl. Phys. Lett.
79
,
705
(
2001
).
2.
A.
Engel
,
J. J.
Renema
,
K.
Il'in
, and
A.
Semenov
,
Supercond. Sci. Technol.
28
,
114003
(
2015
).
3.
R. H.
Hadfield
,
Nat. Photonics
3
,
696
(
2009
).
4.
M. D.
Eisaman
,
J.
Fan
,
A.
Migdall
, and
S. V.
Polyakov
,
Rev. Sci. Instrum.
82
,
071101
(
2011
).
5.
C. M.
Natarajan
,
M. G.
Tanner
, and
R. H.
Hadfield
,
Supercond. Sci. Technol.
25
,
063001
(
2012
).
6.
I.
Holzman
and
Y.
Ivry
,
Adv. Quantum Technol.
2
,
1800058
(
2019
).
7.
X.
Hu
,
C. W.
Holzwarth
,
D.
Masciarelli
,
E. A.
Dauler
, and
K. K.
Berggren
,
IEEE Trans. Appl. Supercond.
19
,
336
(
2009
).
8.
S.
Ferrari
,
C.
Schuck
, and
W.
Pernice
,
Nanophotonics
7
,
1725
(
2018
).
9.
Superconducting Devices in Quantum Optics
, edited by
R. H.
Hadfield
and
G.
Johansson
(
Springer International Publishing
,
2016
).
10.
M. K.
Akhlaghi
,
E.
Schelew
, and
J. F.
Young
,
Nat. Commun.
6
,
8233
(
2015
).
11.
A.
Vetter
,
S.
Ferrari
,
P.
Rath
,
R.
Alaee
,
O.
Kahl
,
V.
Kovalyuk
,
S.
Diewald
,
G. N.
Goltsman
,
A.
Korneev
,
C.
Rockstuhl
, and
W. H. P.
Pernice
,
Nano Lett.
16
,
7085
(
2016
).
12.
J.
Münzberg
,
A.
Vetter
,
F.
Beutel
,
W.
Hartmann
,
S.
Ferrari
,
W. H. P.
Pernice
, and
C.
Rockstuhl
,
Optica
5
,
658
(
2018
).
13.
A. J.
Kerman
,
E. A.
Dauler
,
W. E.
Keicher
,
J. K. W.
Yang
,
K. K.
Berggren
,
G.
Gol'tsman
, and
B.
Voronov
,
Appl. Phys. Lett.
88
,
111116
(
2006
).
14.
A. J.
Annunziata
,
O.
Quaranta
,
D. F.
Santavicca
,
A.
Casaburi
,
L.
Frunzio
,
M.
Ejrnaes
,
M. J.
Rooks
,
R.
Cristiano
,
S.
Pagano
,
A.
Frydman
, and
D. E.
Prober
,
J. Appl. Phys.
108
,
084507
(
2010
).
15.
V.
Burenkov
,
H.
Xu
,
B.
Qi
,
R. H.
Hadfield
, and
H.-K.
Lo
,
J. Appl. Phys.
113
,
213102
(
2013
).
16.
A. J.
Kerman
,
D.
Rosenberg
,
R. J.
Molnar
, and
E. A.
Dauler
,
J. Appl. Phys.
113
,
144511
(
2013
).
17.
A.
Feito
,
J. S.
Lundeen
,
H.
Coldenstrodt-Ronge
,
J.
Eisert
,
M. B.
Plenio
, and
I. A.
Walmsley
,
New J. Phys.
11
,
093038
(
2009
).
18.
M. K.
Akhlaghi
,
A. H.
Majedi
, and
J. S.
Lundeen
,
Opt. Express
19
,
21305
(
2011
).
19.
J. J.
Renema
,
G.
Frucci
,
Z.
Zhou
,
F.
Mattioli
,
A.
Gaggero
,
R.
Leoni
,
M. J. A.
de Dood
,
A.
Fiore
, and
M. P.
van Exter
,
Opt. Express
20
,
2806
(
2012
).
20.
S.
Ferrari
,
O.
Kahl
,
V.
Kovalyuk
,
G. N.
Goltsman
,
A.
Korneev
, and
W. H. P.
Pernice
,
Appl. Phys. Lett.
106
,
151101
(
2015
).
21.
F.
Marsili
,
M. J.
Stevens
,
A.
Kozorezov
,
V. B.
Verma
,
C.
Lambert
,
J. A.
Stern
,
R.
Horansky
,
S.
Dyer
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
, in
CLEO
(
OSA
,
2014
).
22.
S.
Ferrari
,
V.
Kovalyuk
,
W.
Hartmann
,
A.
Vetter
,
O.
Kahl
,
C.
Lee
,
A.
Korneev
,
C.
Rockstuhl
,
G.
Gol'tsman
, and
W.
Pernice
,
Opt. Express
25
,
8739
(
2017
).
23.
J. J.
Renema
,
R.
Gaudio
,
Q.
Wang
,
A.
Gaggero
,
F.
Mattioli
,
R.
Leoni
,
M. P.
van Exter
,
A.
Fiore
, and
M. J. A.
de Dood
,
Appl. Phys. Lett.
110
,
233103
(
2017
).
24.
M.
Polyakova
,
A.
Semenov
,
V.
Kovalyuk
,
S.
Ferrari
,
W.
Pernice
, and
G.
Goltsman
,
IEEE Trans. Appl. Supercond.
29
,
5
(
2019
).
25.
O.
Kahl
,
S.
Ferrari
,
V.
Kovalyuk
,
G. N.
Goltsman
,
A.
Korneev
, and
W. H. P.
Pernice
,
Sci. Rep.
5
,
10941
(
2015
).
26.
P.
Rath
,
A.
Vetter
,
V.
Kovalyuk
,
S.
Ferrari
,
O.
Kahl
,
C.
Nebel
,
G. N.
Goltsman
,
A.
Korneev
, and
W. H. P.
Pernice
, in
Integrated Optics: Devices, Materials, and Technologies XX
, edited by
J.-E.
Broquin
and
G. N.
Conti
(
SPIE
,
2016
).
27.
O.
Kahl
,
S.
Ferrari
,
V.
Kovalyuk
,
A.
Vetter
,
G.
Lewes-Malandrakis
,
C.
Nebel
,
A.
Korneev
,
G.
Goltsman
, and
W.
Pernice
,
Optica
4
,
557
(
2017
).
28.
R.
Gaudio
,
K. P. M.
Op't Hoog
,
Z.
Zhou
,
D.
Sahin
, and
A.
Fiore
,
Appl. Phys. Lett.
105
,
222602
(
2014
).
29.
Q.
Zhao
,
T.
Jia
,
M.
Gu
,
C.
Wan
,
L.
Zhang
,
W.
Xu
,
L.
Kang
,
J.
Chen
, and
P.
Wu
,
Opt. Lett.
39
,
1869
(
2014
).
30.
Q.
Zhao
,
L.
Zhang
,
T.
Jia
,
L.
Kang
,
W.
Xu
,
J.
Chen
, and
P.
Wu
,
Appl. Phys. B
104
,
673
(
2011
).

Supplementary Material

You do not currently have access to this content.