We present a terahertz quantum cascade laser operating on a thermoelectric cooler up to a record-high temperature of 210.5 K. The active region design is based on only two quantum wells and achieves high temperature operation thanks to a systematic optimization by means of a nonequilibrium Green's function model. Laser spectra were measured with a room temperature detector, making the whole setup cryogenic free. At low temperatures (∼40 K), a maximum output power of 200 mW was measured.

1.
S. S.
Dhillon
,
M. S.
Vitiello
,
E. H.
Linfield
,
A. G.
Davies
,
M. C.
Hoffmann
,
J.
Booske
,
C.
Paoloni
,
M.
Gensch
,
P.
Weightman
,
G. P.
Williams
,
E.
Castro-Camus
,
D. R. S.
Cumming
,
F.
Simoens
,
I.
Escorcia-Carranza
,
J.
Grant
,
S.
Lucyszyn
,
M.
Kuwata-Gonokami
,
K.
Konishi
,
M.
Koch
,
C. A.
Schmuttenmaer
,
T. L.
Cocker
,
R.
Huber
,
A. G.
Markelz
,
Z. D.
Taylor
,
V. P.
Wallace
,
J. A.
Zeitler
,
J.
Sibik
,
T. M.
Korter
,
B.
Ellison
,
S.
Rea
,
P.
Goldsmith
,
K. B.
Cooper
,
R.
Appleby
,
D.
Pardo
,
P. G.
Huggard
,
V.
Krozer
,
H.
Shams
,
M.
Fice
,
C.
Renaud
,
A.
Seeds
,
A.
Stöhr
,
M.
Naftaly
,
N.
Ridler
,
R.
Clarke
,
J. E.
Cunningham
, and
M. B.
Johnston
, “
The 2017 terahertz science and technology roadmap
,”
J. Phys. D: Appl. Phys.
50
(
4
),
043001
(
2017
).
2.
J.
Faist
,
F.
Capasso
,
D. L.
Sivco
,
C.
Sirtori
,
A. L.
Hutchinson
, and
A. Y.
Cho
, “
Quantum cascade laser
,”
Science
264
(
5158
),
553
556
(
1994
).
3.
R.
Köhler
,
A.
Tredicucci
,
F.
Beltram
,
H. E.
Beere
,
E. H.
Linfield
,
A. G.
Davies
,
D. A.
Ritchie
,
R. C.
Iotti
, and
F.
Rossi
, “
Terahertz semiconductor-heterostructure laser
,”
Nature
417
(
6885
),
156
159
(
2002
).
4.
B. S.
Williams
, “
Terahertz quantum-cascade lasers
,”
Nat. Photonics
1
(
517
)
, 517
525
(
2007
).
5.
L.
Lianhe
,
L.
Chen
,
J.
Zhu
,
J.
Freeman
,
P.
Dean
,
A.
Valavanis
,
A. G.
Davies
, and
E. H.
Linfield
, “
Terahertz quantum cascade lasers with >1 W output powers
,”
Electron. Lett.
50
(
4
),
309
311
(
2014
).
6.
M.
Brandstetter
,
C.
Deutsch
,
M.
Krall
,
H.
Detz
,
D. C.
Macfarland
,
T.
Zederbauer
,
A. M.
Andrews
,
W.
Schrenk
,
G.
Strasser
, and
K.
Unterrainer
, “
High power terahertz quantum cascade lasers with symmetric wafer bonded active regions
,”
Appl. Phys. Lett.
103
(
17
),
171113
(
2013
).
7.
C.
Sirtori
,
S.
Barbieri
, and
R.
Colombelli
, “
Wave engineering with THz quantum cascade lasers
,”
Nat. Photonics
7
(
9
),
691
701
(
2013
).
8.
M.
Rösch
,
G.
Scalari
,
M.
Beck
, and
J.
Faist
, “
Octave-spanning semiconductor laser
,”
Nat. Photonics
9
(
1
),
42
47
(
2015
).
9.
S.
Fathololoumi
,
E.
Dupont
,
C. W. I.
Chan
,
Z. R.
Wasilewski
,
S. R.
Laframboise
,
D.
Ban
,
A.
Mátyás
,
C.
Jirauschek
,
Q.
Hu
, and
H. C.
Liu
, “
Terahertz quantum cascade lasers operating up to ∼ 200 K with optimized oscillator strength and improved injection tunneling
,”
Opt. Express
20
(
4
),
3866
(
2012
).
10.
J.
Faist
, “
Wallplug efficiency of quantum cascade lasers: Critical parameters and fundamental limits
,”
Appl. Phys. Lett.
90
(
25
),
253512
(
2007
).
11.
J.
Faist
and
G.
Scalari
, “
Unified description of resonant tunnelling diodes and terahertz quantum cascade lasers
,”
Electron. Lett.
46
,
S46
(
2010
).
12.
G.
Scalari
,
L.
Ajili
,
J.
Faist
,
H.
Beere
,
E.
Linfield
,
D.
Ritchie
, and
G.
Davies
, “
Far-infrared (λ ≃ 87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K
,”
Appl. Phys. Lett.
82
(
19
),
3165
(
2003
).
13.
G.
Scalari
,
N.
Hoyler
,
M.
Giovannini
, and
J.
Faist
, “
Terahertz bound-to-continuum quantum-cascade lasers based on optical-phonon scattering extraction
,”
Appl. Phys. Lett.
86
(
18
),
181101
(
2005
).
14.
M. I.
Amanti
,
G.
Scalari
,
R.
Terazzi
,
M.
Fischer
,
M.
Beck
,
J.
Faist
,
A.
Rudra
,
P.
Gallo
, and
E.
Kapon
, “
Bound-to-continuum terahertz quantum cascade laser with a single-quantum-well phonon extraction/injection stage
,”
New J. Phys.
11
,
125022
(
2009
).
15.
E.
Dupont
,
S.
Fathololoumi
,
Z. R.
Wasilewski
,
G.
Aers
,
S. R.
Laframboise
,
M.
Lindskog
,
S. G.
Razavipour
,
A.
Wacker
,
D.
Ban
, and
H. C.
Liu
, “
A phonon scattering assisted injection and extraction based terahertz quantum cascade laser
,”
J. Appl. Phys.
111
(
7
),
073111
(
2012
).
16.
A.
Wacker
, “
Extraction-controlled quantum cascade lasers
,”
Appl. Phys. Lett.
97
(
8
),
081105
(
2010
).
17.
G.
Scalari
,
M. I.
Amanti
,
C.
Walther
,
R.
Terazzi
,
M.
Beck
, and
J.
Faist
, “
Broadband THz lasing from a photon-phonon quantum cascade structure
,”
Opt. Express
18
(
8
),
8043
8052
(
2010
).
18.
H.
Luo
,
S. R.
Laframboise
,
Z. R.
Wasilewski
,
G. C.
Aers
,
H. C.
Liu
, and
J. C.
Cao
, “
Terahertz quantum-cascade lasers based on a three-well active module
,”
Appl. Phys. Lett.
90
(
4
),
041112
(
2007
).
19.
S.
Kumar
,
Q.
Hu
, and
J. L.
Reno
, “
186 K operation of terahertz quantum-cascade lasers based on a diagonal design
,”
Appl. Phys. Lett.
94
(
13
),
131105
(
2009
).
20.
G.
Scalari
,
M.
Amanti
,
R.
Terazzi
,
M.
Beck
, and
J.
Faist
, “
Two-well quantum cascade laser emitting from 2.7 to 4.1 THz
,” in
Proceedings of the Tenth International Conference on Intersubband Transitions in Quantum Wells
,
Montreal, Canada
, September (
2009
).
21.
S.
Kumar
,
C. W. I.
Chan
,
Q.
Hu
, and
J. L.
Reno
, “
Two-well terahertz quantum-cascade laser with direct intrawell-phonon depopulation
,”
Appl. Phys. Lett.
95
(
14
),
141110
(
2009
).
22.
M.
Franckié
,
L.
Bosco
,
M.
Beck
,
C.
Bonzon
,
E.
Mavrona
,
G.
Scalari
,
A.
Wacker
, and
J.
Faist
, “
Two-well quantum cascade laser optimization by non-equilibrium Green's function modelling
,”
Appl. Phys. Lett.
112
(
2
),
021104
(
2018
).
23.
A.
Albo
,
Y. V.
Flores
,
Q.
Hu
, and
J. L.
Reno
, “
Two-well terahertz quantum cascade lasers with suppressed carrier leakage
,”
Appl. Phys. Lett.
111
(
11
),
111107
(
2017
).
24.
R. F.
Kazarinov
and
R. A.
Suris
, “
Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice
,”
Sov. Phys. Semicond.
5
(
4
),
707
709
(
1971
).
25.
S. G.
Razavipour
,
E.
Dupont
,
S.
Fathololoumi
,
C. W. I.
Chan
,
M.
Lindskog
,
Z. R.
Wasilewski
,
G.
Aers
,
S. R.
Laframboise
,
A.
Wacker
,
Q.
Hu
,
D.
Ban
, and
H. C.
Liu
, “
An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K
,”
J. Appl. Phys.
113
(
20
),
203107
(
2013
).
26.
A.
Wacker
,
M.
Lindskog
, and
D. O.
Winge
, “
Nonequilibrium Green's function model for simulation of quantum cascade laser devices under operating conditions
,”
IEEE J. Sel. Top. Quantum Electron.
19
(
5
),
1
11
(
2013
).
27.
Y.
Sergeev
and
R.
Strongin
, “
A global minimization algorithm with parallel iterations
,”
USSR Comput. Math. Math. Phys.
29
(
2
),
7
15
(
1989
).
28.
S.
Kohen
,
B. S.
Williams
, and
Q.
Hu
, “
Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators
,”
J. Appl. Phys.
97
(
5
),
053106
(
2005
).
29.
D. O.
Winge
,
M.
Franckié
,
C.
Verdozzi
,
A.
Wacker
, and
M. F.
Pereira
, “
Simple electron-electron scattering in non-equilibrium Green's function simulations
,”
J. Phys.: Conf. Ser.
696
(
1
),
012013
(
2016
).
You do not currently have access to this content.