The effect of an ultrathin W interlayer on the perpendicular magnetic anisotropy (PMA), spin orbit torque (SOT), and SOT-induced magnetization switching of Ta/CoFeB/MgO films has been investigated. Both the anisotropy energy density and the spin-torque efficiency are enhanced by inserting the ultrathin W interlayer. The results suggest that the large enhancement of the spin-torque efficiency originates from the increase in the interfacial spin transparency using a simplified drift-diffusion model. The minimum in-plane field required for SOT-induced complete switching is reduced to 12 Oe for the sample with the W interlayer, which is confirmed by polar Kerr microscopy. The reversed domain nucleation and propagation of the reversal processes have been observed by Kerr imaging. It is concluded that the ultrathin W interlayer increases the spin transmission and reduces the strength of the Dzyaloshinskii–Moriya interaction. Our result suggests that the interface modification is an efficient way to modulate the PMA and SOT.

1.
Y.
Fan
,
P.
Upadhyaya
,
X.
Kou
,
M.
Lang
,
S.
Takei
,
Z.
Wang
,
J.
Tang
,
L.
He
,
L. T.
Chang
,
M.
Montazeri
 et al,
Nat. Mater.
13
,
699
(
2014
).
2.
G. E.
Rowlands
,
S. V.
Aradhya
,
S.
Shi
,
E. H.
Yandel
,
J.
Oh
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
110
,
122402
(
2017
).
3.
A.
Brataas
and
K. M.
Hals
,
Nat. Nanotechnol.
9
,
86
(
2014
).
4.
K.
Garello
,
C. O.
Avci
,
I. M.
Miron
,
M.
Baumgartner
,
A.
Ghosh
,
S.
Auffret
,
O.
Boulle
,
G.
Gaudin
, and
P.
Gambardella
,
Appl. Phys. Lett.
105
,
212402
(
2014
).
5.
S.
Fukami
,
T.
Anekawa
,
C.
Zhang
, and
H.
Ohno
,
Nat. Nanotechnol.
11
,
621
(
2016
).
6.
S.
Emori
,
U.
Bauer
,
S. M.
Ahn
,
E.
Martinez
, and
G. S.
Beach
,
Nat. Mater.
12
,
611
(
2013
).
7.
K. S.
Ryu
,
L.
Thomas
,
S. H.
Yang
, and
S.
Parkin
,
Nat. Nanotechnol.
8
,
527
(
2013
).
8.
I. M.
Miron
,
T.
Moore
,
H.
Szambolics
,
L. D.
Buda Prejbeanu
,
S.
Auffret
,
B.
Rodmacq
,
S.
Pizzini
,
J.
Vogel
,
M.
Bonfim
,
A.
Schuhl
 et al,
Nat. Mater.
10
,
419
(
2011
).
9.
L.
Liu
,
C. F.
Pai
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
109
,
186602
(
2012
).
10.
V. E.
Demidov
,
S.
Urazhdin
,
H.
Ulrichs
,
V.
Tiberkevich
,
A.
Slavin
,
D.
Baither
,
G.
Schmitz
, and
S. O.
Demokritov
,
Nat. Mater.
11
,
1028
(
2012
).
11.
T.
Jungwirth
,
X.
Marti
,
P.
Wadley
, and
J.
Wunderlich
,
Nat. Nanotechnol.
11
,
231
(
2016
).
12.
P. M.
Haney
,
H. W.
Lee
,
K. J.
Lee
,
A.
Manchon
, and
M. D.
Stiles
,
Phys. Rev. B
87
,
174411
(
2013
).
13.
D.
Thonig
,
O.
Eriksson
, and
M.
Pereiro
,
Sci. Rep.
7
,
931
(
2017
).
14.
K.
Chen
and
S.
Zhang
,
IEEE Magn. Lett.
6
,
3000304
(
2015
).
15.
K.
Chen
and
S.
Zhang
,
Phys. Rev. Lett.
114
,
126602
(
2015
).
16.
X.
Tao
,
Q.
Liu
,
B.
Miao
,
R.
Yu
,
Z.
Feng
,
L.
Sun
,
B.
You
,
J.
Du
,
K.
Chen
,
S.
Zhang
 et al,
Sci. Adv.
4
,
1670
(
2018
).
17.
M. H.
Nguyen
,
K. X.
Nguyen
,
D. A.
Muller
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
106
,
222402
(
2015
).
18.
W.
Zhang
,
W.
Han
,
X.
Jiang
,
S. H.
Yang
, and
S. S. P.
Parkin
,
Nat. Phys.
11
,
496
(
2015
).
19.
C. F.
Pai
,
Y.
Ou
,
L. H.
Vilela Leão
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. B
92
,
064426
(
2015
).
20.
M. H.
Nguyen
,
M.
Zhao
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
108
,
242407
(
2016
).
21.
Q.
Hao
,
W.
Chen
, and
G.
Xiao
,
Appl. Phys. Lett.
106
,
182403
(
2015
).
22.
Q.
Ma
,
Y.
Li
,
D. B.
Gopman
,
Y. P.
Kabanov
,
R. D.
Shull
, and
C. L.
Chien
,
Phys. Rev. Lett.
120
,
117703
(
2018
).
23.
S. K.
Li
,
X. T.
Zhao
,
W.
Liu
,
T. T.
Wang
,
X. G.
Zhao
, and
Z. D.
Zhang
,
AIP Adv.
8
,
065007
(
2018
).
24.
R.
Lo Conte
,
A.
Hrabec
,
A. P.
Mihai
,
T.
Schulz
,
S. J.
Noh
,
C. H.
Marrows
,
T. A.
Moore
, and
M.
Kläui
,
Appl. Phys. Lett.
105
,
122404
(
2014
).
25.
D.
Li
,
B.
Cui
,
T.
Wang
,
J.
Yun
,
X.
Guo
,
K.
Wu
,
Y.
Zuo
,
J.
Wang
,
D.
Yang
, and
L.
Xi
,
Appl. Phys. Lett.
110
,
132407
(
2017
).
26.
M.
Mann
and
G. S. D.
Beach
,
APL Mater.
5
,
106104
(
2017
).
27.
T.
Liu
,
Y.
Zhang
,
J. W.
Cai
, and
H. Y.
Pan
,
Sci. Rep.
4
,
5895
(
2014
).
28.
J.
Torrejon
,
J.
Kim
,
J.
Sinha
,
S.
Mitani
,
M.
Hayashi
,
M.
Yamanouchi
, and
H.
Ohno
,
Nat. Commun.
5
,
4655
(
2014
).
29.
C. O.
Avci
,
K.
Garello
,
C.
Nistor
,
S.
Godey
,
B.
Ballesteros
,
A.
Mugarza
,
A.
Barla
,
M.
Valvidares
,
E.
Pellegrin
,
A.
Ghosh
 et al,
Phys. Rev. B
89
,
214419
(
2014
).
30.
M. S.
Gabor
,
T.
Petrisor
,
R. B.
Mos
,
A.
Mesaros
,
M.
Nasui
,
M.
Belmeguenai
,
F.
Zighem
, and
C.
Tiusan
,
J. Phys. D: Appl. Phys.
49
,
365003
(
2016
).
31.
S.
Cho
,
S. H.
Baek
,
K. D.
Lee
,
Y.
Jo
, and
B. G.
Park
,
Sci. Rep.
5
,
14668
(
2015
).
32.
J.
Kim
,
J.
Sinha
,
M.
Hayashi
,
M.
Yamanouchi
,
S.
Fukami
,
T.
Suzuki
,
S.
Mitani
, and
H.
Ohno
,
Nat. Mater.
12
,
240
(
2013
).
33.
X.
Qiu
,
P.
Deorani
,
K.
Narayanapillai
,
K. S.
Lee
,
K. J.
Lee
,
H. W.
Lee
, and
H.
Yang
,
Sci. Rep.
4
,
4491
(
2014
).
34.
T. Y.
Tsai
,
T. Y.
Chen
,
C. T.
Wu
,
H. I.
Chan
, and
C. F.
Pai
,
Sci. Rep.
8
,
5613
(
2018
).
35.
C. F.
Pai
,
M. H.
Nguyen
,
C.
Belvin
,
L. H.
Vilela Leão
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Appl. Phys. Lett.
104
,
082407
(
2014
).
36.
L. Q.
Liu
,
T.
Moriyama
,
D. C.
Ralph
, and
R. A.
Buhrman
,
Phys. Rev. Lett.
106
,
36601
(
2011
).
37.
X. T.
Zhao
,
W.
Liu
,
S. K.
Li
,
T. T.
Wang
,
L.
Liu
,
Y.
Song
,
S.
Ma
,
X. g
Zhao
, and
Z. D.
Zhang
,
Nanoscale
10
,
7612
(
2018
).
38.
J.
Cao
,
Y.
Chen
,
T.
Jin
,
W.
Gan
,
Y.
Wang
,
Y.
Zheng
,
H.
Lv
,
S.
Cardoso
,
D.
Wei
, and
W. S.
Lew
,
Sci. Rep.
8
,
1335
(
2018
).
39.
J.
Yu
,
X.
Qiu
,
Y.
Wu
,
J.
Yoon
,
P.
Deorani
,
J. M.
Besbas
,
A.
Manchon
, and
H.
Yang
,
Sci. Rep.
6
,
32629
(
2016
).
40.
O.
Boulle
,
S.
Rohart
,
L. D.
Buda Prejbeanu
,
E.
Jue
,
I. M.
Miron
,
S.
Pizzini
,
J.
Vogel
,
G.
Gaudin
, and
A.
Thiaville
,
Phys. Rev. Lett.
111
,
217203
(
2013
).
41.
D. Y.
Kim
,
M. H.
Park
,
Y. K.
Park
,
J. S.
Kim
,
Y. S.
Nam
,
H. S.
Hwang
,
D. H.
Kim
,
S. G.
Je
,
B. C.
Min
, and
S. B.
Choe
,
Phys. Rev. B
97
,
134407
(
2018
).
42.
C. B.
Muratov
,
V. V.
Slastikov
,
A. G.
Kolesnikov
, and
O. A.
Tretiakov
,
Phys. Rev. B
96
,
134417
(
2017
).
You do not currently have access to this content.