Passivating metal/silicon contacts combine low carrier recombination with low contact resistivities, enabled by a low gap state density at their interface. Such contacts find applications in high-efficiency solar cells. We perform first-principles calculations based on density functional theory to investigate the surface defect and metal-induced gap state density of silicon in close contact with metals (Al and Ag). We confirm that surface hydrogenation fully removes surface-defect gap states of (111)-oriented silicon surfaces. However, the metal-induced gap state density increases significantly when metals are closer than 0.5 nm to such surfaces. These results highlight the importance of the tunneling-film thickness in achieving effective passivating-contact formation.

1.
C.
Battaglia
,
A.
Cuevas
, and
S. D.
Wolf
, “
High-efficiency crystalline silicon solar cells: Status and perspectives
,”
Energy Environ. Sci.
9
,
1552
1576
(
2016
).
2.
J.
Benick
,
B.
Hoex
,
M.
Sanden
,
W.
Kessels
,
O.
Schultz
, and
S.
Glunz
, “
High efficiency n-type Si solar cells on Al2O3-passivated boron emitters
,”
Appl. Phys. Lett.
92
,
253504
(
2008
).
3.
B.
Min
,
M.
Müller
,
H.
Wagner
,
G.
Fischer
,
R.
Brendel
,
P. P.
Altermatt
, and
H.
Neuhaus
, “
A roadmap toward 24% efficient PERC solar cells in industrial mass production
,”
IEEE J. Photovoltaics
7
,
1541
1550
(
2017
).
4.
A.
Richter
,
J.
Benick
,
F.
Feldmann
,
A.
Fell
,
M.
Hermle
, and
S. W.
Glunz
, “
n-type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation
,”
Sol. Energy Mater. Sol. Cell
173
,
96
105
(
2017
).
5.
K.
Yoshikawa
,
H.
Kawasaki
,
W.
Yoshida
,
T.
Irie
,
K.
Konishi
,
K.
Nakano
,
T.
Uto
,
D.
Adachi
,
M.
Kanematsu
,
H.
Uzu
, and
K.
Yamamoto
, “
Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%
,”
Nat. Energy
2
,
17032
(
2017
).
6.
D.
Adachi
,
J. L.
Hernandez
, and
K.
Yamamoto
, “
Impact of carrier recombination on fill factor for large area heterojunction crystalline silicon solar cell with 25.1% efficiency
,”
Appl. Phys. Lett.
107
,
233506
(
2015
).
7.
J.
Geissbuhler
,
J.
Werner
,
S. M.
Nicolas
,
L.
Barraud
,
A.
Hessler-Wyser
,
M.
Despeisse
,
S.
Nicolay
,
A.
Tomasi
,
B.
Niesen
,
S. D.
Wolf
, and
C.
Ballif
, “
22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
,”
Appl. Phys. Lett.
107
,
081601
(
2015
).
8.
L. G.
Gerling
,
S.
Mahato
,
A.
Morales-Vilches
,
G.
Masmitja
,
P.
Ortega
,
C.
Voz
,
R.
Alcubilla
, and
J.
Puigdollers
, “
Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells
,”
Sol. Energy Mater. Sol. Cell
145
,
109
115
(
2016
).
9.
M.
Bivour
,
J.
Temmler
,
H.
Steinkemper
, and
M.
Hermle
, “
Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells
,”
Sol. Energy Mater. Sol. Cell
142
,
34
41
(
2015
).
10.
X. B.
Yang
,
P. T.
Zheng
,
Q. Y.
Bi
, and
K.
Weber
, “
Silicon heterojunction solar cells with electron selective TiOx contact
,”
Sol. Energy Mater. Sol. Cell
150
,
32
38
(
2016
).
11.
X. B.
Yang
,
Q. Y.
Bi
,
H.
Ali
,
K.
Davis
,
W. V.
Schoenfeld
, and
K.
Weber
, “
High-performance TiO2-based electron-selective contacts for crystalline silicon solar cells
,”
Adv. Mater.
28
,
5891
5897
(
2016
).
12.
J.
Bullock
,
M.
Hettick
,
J.
Geissbühler
,
A. J.
Ong
,
T.
Allen
,
C. M.
Sutter-Fella
,
T.
Chen
,
H.
Ota
,
E. W.
Schaler
,
S. D.
Wolf
,
C.
Ballif
,
A.
Cuevas
, and
A.
Javey
, “
Efficient silicon solar cells with dopant-free asymmetric heterocontacts
,”
Nat. Energy
1
,
15031
(
2016
).
13.
X.
Yang
,
E.
Aydin
,
H.
Xu
,
J.
Kang
,
M.
Hedhili
,
W.
Liu
,
Y.
Wan
,
J.
Peng
,
C.
Samundsett
,
A.
Cuevas
, and
S.
De Wolf
, “
Tantalum nitride electron-selective contact for crystalline silicon solar cells
,”
Adv. Energy Mater.
8
,
1800608
(
2018
).
14.
X.
Yu
,
T. J.
Marks
, and
A.
Facchetti
, “
Metal oxides for optoelectronic applications
,”
Nat. Mater.
15
,
383
396
(
2016
).
15.
M. T.
Greiner
and
Z.-H.
Lu
, “
Thin-film metal oxides in organic semiconductor devices: Their electronic structures, work functions and interfaces
,”
NPG Asia Mater.
5
,
e55
(
2013
).
16.
J.
Bullock
,
A.
Cuevas
,
T.
Allen
, and
C.
Battaglia
, “
Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells
,”
Appl. Phys. Lett.
105
,
232109
(
2014
).
17.
Y.
Wan
,
C.
Samundsett
,
J.
Bullock
,
M.
Hettick
,
T.
Allen
,
D.
Yan
,
J.
Peng
,
Y.
Wu
,
J.
Cui
,
A.
Javey
, and
A.
Cuevas
, “
Conductive and stable magnesium oxide electron-selective contacts for efficient silicon solar cells
,”
Adv. Energy Mater.
7
,
1601863
(
2017
).
18.
V.
Heine
, “
Theory of surface states
,”
Phys. Rev.
138
,
A1689
(
1965
).
19.
Y.
Gohda
,
S.
Watanabe
, and
A.
Groß
, “
Quantum electron transport through ultrathin Si films: Effects of interface passivation on fermi-level pinning
,”
Phys. Rev. Lett.
101
,
166801
(
2008
).
20.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
1775
(
1999
).
21.
F. G.
Pikus
and
K. K.
Likharev
, “
Nanoscale field-effect transistors: An ultimate size analysis
,”
Appl. Phys. Lett.
71
,
3661
(
1997
).
22.
P.
Zhang
,
E.
Tevaarwerk
,
B.-N.
Park
,
D. E.
Savage
,
G. K.
Celler
,
I.
Knezevic
,
P. G.
Evans
,
M. A.
Eriksson
, and
M. G.
Lagally
, “
Electronic transport in nanometre-scale silicon-on-insulator membranes
,”
Nature
439
,
703
706
(
2006
).
23.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Boca Raton
,
1992
).
24.
A.
Many
,
Y.
Goldstein
, and
N. B.
Grover
,
Semiconductor Surfaces
(
North Holland Publishing Co.
,
Amsterdam
,
1965
).
25.
S. G.
Louie
and
M. L.
Cohen
, “
Electronic structure of a metal-semiconductor interface
,”
Phys. Rev. B
13
,
2461
(
1976
).
26.
J.
Tersoff
, “
Schottky barrier heights and the continuum of gap states
,”
Phys. Rev. Lett.
52
,
1054
(
1984
).
27.
R.
Asahi
,
Y.
Taga
,
W.
Mannstadt
, and
A. J.
Freeman
, “
Electronic and optical properties of anatase TiO2
,”
Phys. Rev. B
61
,
7459
(
2000
).
28.
W.
Bludau
,
A.
Onton
, and
W.
Heinke
, “
Temperature dependence of the band gap in silicon
,”
J. App. Phys.
45
,
1846
1848
(
1974
).
29.
A. S.
Kale
,
W.
Nemeth
,
S. P.
Harvey
,
M.
Page
,
D. L.
Young
,
S.
Agarwal
, and
P.
Stradins
, “
Effect of silicon oxide thickness on polysilicon based passivated contacts for high-efficiency crystalline silicon solar cells
,”
Sol. Energy Mater. Sol. Cell
185
,
270
276
(
2018
).
30.
W. B.
Jackson
,
N. M.
Johnson
, and
D. K.
Biegelsen
, “
Density of gap states of silicon grain boundaries determined by optical absorption
,”
Appl. Phys. Lett.
43
,
195
(
1993
).
31.
G.
Fortunato
and
P.
Migliorato
, “
Determination of gap state density in polycrystalline silicon by field-effect conductance
,”
Appl. Phys. Lett.
49
,
1025
1027
(
1986
).
You do not currently have access to this content.