We study the impact of the SiGe thickness in starting substrates composed of Si/Si0.25Ge0.75/SOI(100) structures for the Ge condensation process on the resulting Ge-on-insulator (GOI) film properties. We evaluate the physical properties of the GOI films using AFM and Raman spectroscopy. It is found that 10-nm-thick GOI films with higher compressive strain (εc = 1.75%) and more uniform spatial strain distribution are obtained for 40 nm-thick-Si0.75Ge0.25 through a Ge condensation process with slow cooling than 60 nm-thick-SiGe. This suppression of strain relaxation is due to the lower total strain energy by the thinner SiGe layer. By using this GOI substrate, 10-nm-thick GOI p-channel metal-oxide-semiconductor field effect transistors (pMOSFETs) are demonstrated with the high performance of μh = 467 cm2 V−1 s−1 and Ion/Ioff > 7.2 × 105. The effective hole mobility of the 10 nm-thick GOI pMOSFET increases significantly with reducing measurement temperature from 298 K to 100 K, indicating the high contribution of phonon scattering to the mobility.

1.
P. A.
Gargini
,
Comput. Sci. Eng.
19
,
51
(
2017
).
2.
S.
Takagi
,
T.
Irisawa
,
T.
Tezuka
,
T.
Numata
,
S.
Nakaharai
,
N.
Hirashita
,
Y.
Moriyama
,
K.
Usuda
,
E.
Toyoda
,
S.
Dissanayake
,
M.
Shichijo
,
R.
Nakane
,
S.
Sugahara
,
M.
Takenaka
, and
N.
Sugiyama
,
IEEE Trans. Electron Devices
55
,
21
(
2008
).
3.
M.
Caymax
,
G.
Eneman
,
F.
Bellenger
,
C.
Merckling
,
A.
Delabie
,
G.
Wang
,
R.
Loo
,
E.
Simoen
,
J.
Mitard
,
B.
De Jaeger
,
G.
Hellings
,
K.
De. Meyer
,
M.
Meuris
, and
M.
Heyns
,
IEEE IEDM Tech. Dig.
31
,
461
(
2009
).
4.
A.
Toriumi
and
T.
Nishimura
,
Jpn. J. Appl. Phys. Part 1
57
,
010101-1
(
2018
).
5.
P. S.
Goley
and
M. K.
Hudait
,
Materials
7
,
2301
(
2014
).
6.
S.
Takagi
,
R.
Zhang
,
J.
Suh
,
S.-H.
Kim
,
M.
Yokoyama
,
K.
Nishi
, and
M.
Takenaka
,
Jpn. J. Appl. Phys. Part 1
54
,
06FA01
(
2016
).
7.
T.
Tezuka
,
K.
Ikeda
,
Y.
Kamata
,
Y.
Kamimuta
,
K.
Usuda
,
Y.
Moriyama
,
M.
Ono
,
M.
Koike
,
M.
Oda
,
T.
Irisawa
,
E.
Mieda
,
T.
Maeda
,
W.
Jevasuwan
,
Y.
Kurashima
,
H.
Takagi
,
K.
Furuse
, and
E.
Kurosawa
,
ECS Trans.
64
,
135
(
2014
).
8.
S.
Nakaharai
,
T.
Tezuka
,
N.
Sugiyama
,
Y.
Moriyama
, and
S.
Takagi
,
Appl. Phys. Lett.
83
,
3516
(
2003
).
9.
T.
Maeda
,
K.
Ikeda
,
S.
Nakaharai
,
T.
Tezuka
,
N.
Sugiyama
,
Y.
Moriyama
, and
S.
Takagi
,
IEEE Electron Device Lett.
26
,
102
(
2005
).
10.
M. L.
Lee
and
E. A.
Fitzgerald
,
J. Appl. Phys.
97
,
011101
(
2005
).
11.
L.
Gomez
,
C. N.
Chléirigh
,
P.
Hashemi
, and
J. L.
Hoyt
,
IEEE Electron Device Lett.
31
,
782
(
2010
).
12.
T.
Tezuka
,
N.
Sugiyama
,
T.
Mizuno
,
M.
Suzuki
, and
S.
Takagi
,
Jpn. J. Appl. Phys. Part 1
40
,
2886
(
2001
); available at http://iopscience.iop.org/1347-4065/40/4S/2866.
13.
S.
Nakaharai
,
T.
Tezuka
,
N.
Hirashita
,
E.
Toyoda
,
Y.
Moriyama
,
N.
Sugiyama
, and
S.
Takagi
,
J. Appl. Phys.
105
,
024515
(
2009
).
14.
D. J.
Paul
,
Semicond. Sci. Technol.
19
,
R75
(
2004
).
15.
N.
Sugiyama
,
T.
Tezuka
,
T.
Irisawa
,
K.
Usuda
,
Y.
Moriyama
,
S.
Nakaharai
,
N.
Hirashita
, and
S.
Takagi
,
ECS Trans.
3
,
1015
(
2006
).
16.
B.
Vincent
,
J.-F.
Damlencourt
,
V.
Delaye
,
R.
Gassilloud
, and
L.
Clavelier
,
Appl. Phys. Lett.
90
,
074101
(
2007
).
17.
N.
Sugiyama
,
T.
Tezuka
,
T.
Mizuno
, and
M.
Suzuki
,
J. Appl. Phys.
95
,
4007
(
2004
).
18.
M. V.
Fischetti
and
S. E.
Laux
,
J. Appl. Phys.
80
,
2234
(
1996
).
19.
G. H.
Wang
and
E.-H.
Toh
,
Appl. Phys. Lett.
89
,
053109
(
2006
).
20.
C.-Y.
Yu
,
C.-Y.
Lee
, and
C.-H.
Lin
,
Appl. Phys. Lett.
89
,
101913
(
2006
).
21.
H.-Y.
Yu
,
S.
Cheng
,
J.-H.
Park
,
A. K.
Okyay
,
M. C.
Onbaşlı
,
B.
Ercan
,
Y.
Nishi
, and
K. C.
Saraswat
,
Appl. Phys. Lett.
97
,
063503
(
2010
).
22.
W.-K.
Kim
,
M.
Takenaka
, and
S.
Takagi
,
VLSI Symp. Tech. Dig.
T124
(
2017
).
23.
K.-W.
Jo
,
W.-K.
Kim
,
M.
Takenaka
, and
S.
Takagi
,
VLSI Symp. Tech Dig.
T19
,
195
(
2018
).
24.
S.
Takagi
,
K.
Tomiyama
,
S.
Dissanayake
, and
M.
Takenaka
,
ECS Trans.
33
,
501
(
2010
).
25.
H.
Yang
,
D.
Wang
, and
H.
Nakashima
,
Thin Solid Films
520
,
3283
(
2012
).
26.
F.
Pezzoli
,
E.
Bonera
,
E.
Grilli
,
M.
Guzzi
,
S.
Sanguinetti
,
D.
Chrastina
,
G.
Isella
,
H.
von Känel
,
E.
Wintersberger
,
J.
Stangl
, and
G.
Bauer
,
Mater. Sci. Semicond. Process.
11
,
279
(
2008
).
27.
E. M.
Rehder
,
C. K.
Inoki
,
T. S.
Kuan
, and
T. F.
Kuech
,
J. Appl. Phys.
94
,
7892
(
2003
).
28.
N.
Hirashita
,
Y.
Moriyama
,
S.
Nakaharai
,
T.
Irisawa
,
N.
Sugiyama
, and
S.
Takagi
,
Appl. Phys. Express
1
,
101401
(
2008
).
29.
X.
Yu
,
J.
Kang
,
M.
Takenaka
, and
S.
Takagi
,
IEEE IEDM Tech. Dig.
21
,
20
(
2015
).
30.
S.
Takagi
,
A.
Toriumi
,
M.
Iwase
, and
H.
Tango
,
IEEE Trans. Electron Devices
41
,
2537
(
1994
).
31.
N.
Taoka
,
W.
Mizubayashi
,
Y.
Morita
,
S.
Migita
,
H.
Ota
, and
S.
Takagi
,
J. Appl. Phys. Lett.
108
,
104511
(
2010
).
32.
X.
Yu
,
J.
Kang
,
R.
Zhang
,
W.-L.
Cai
,
M.
Takenaka
, and
S.
Takagi
,
Microelectron. Eng.
147
,
196
(
2015
).
33.
C. H.
Lee
,
T.
Nishimura
,
T.
Tabata
,
D.
Zhao
,
R.
Ifuku
,
K.
Nagashio
,
K.
Kita
, and
A.
Toriumi
, in
IEEE International SOI Conference
(IEEE,
2011
).
34.
W.-H.
Chang
,
T.
Irisawa
,
H.
Ishii
,
H.
Hattori
,
H.
Takagi
,
Y.
Kurashima
, and
T.
Maeda
,
Appl. Phys. Express
9
,
091302
(
2016
).
You do not currently have access to this content.