We have prepared CuO-based structures including Au/CuO/Pt and Au/CuO/Cu/Pt films and studied the memristive characteristics of the two samples. Current-voltage curves of the samples suggest that both CuO-based films are typical memristive devices, showing conventional pinched hysteresis loops. Furthermore, the presented Au/CuO/Cu/Pt structure with a seed Cu layer between CuO and bottom electrodes Pt demonstrates more typical memristive and better retention characteristics than Au/CuO/Pt. In order to explore the conducting mechanism for improved memristive properties, the electric transport characteristics of the device are analyzed using a space charge limited current and charge trap defect theory.

1.
Z.
Wang
,
L.
Wang
,
M.
Nagai
,
L.
Xie
,
M.
Yi
, and
W.
Huang
,
Adv. Electron. Mater.
3
,
1600510
(
2017
).
3.
M.
Laurenti
,
S.
Porro
,
C. F.
Pirri
,
C.
Ricciardi
, and
A.
Chiolerio
,
Crit. Rev. Solid State Mater. Sci.
42
,
153
(
2017
).
4.
P.
Misra
,
V.
Sahu
,
R.
Ajimsha
,
A.
Das
, and
B.
Singh
,
J. Phys. D: Appl. Phys.
50
,
415106
(
2017
).
5.
J.
Yu
,
W.
Huang
,
C.
Lu
,
G.
Lin
,
C.
Li
,
S.
Chen
,
J.
Wang
,
J.
Xu
,
C.
Liu
, and
H.
Lai
,
Jpn. J. Appl. Phys., Part 1
56
,
050304
(
2017
).
6.
R. S.
Williams
,
IEEE Spectrum
45
,
28
(
2008
).
7.
K.
D'Aquila
,
C.
Phatak
,
M. V.
Holt
,
B. D.
Stripe
,
S.
Tong
,
W. I.
Park
,
S.
Hong
, and
A. K.
Petford-Long
,
Appl. Phys. Lett.
104
,
242902
(
2014
).
8.
K. D.
Liang
,
C. H.
Huang
,
C. C.
Lai
,
J. S.
Huang
,
H. W.
Tsai
,
Y. C.
Wang
,
Y. C.
Shih
,
M. T.
Chang
,
S. C.
Lo
, and
Y. L.
Chueh
,
ACS Appl. Mater. Interfaces
6
,
16537
(
2014
).
9.
B.
Singh
and
B.
Mehta
,
Thin Solid Films
569
,
35
(
2014
).
10.
Y. S.
Hong
,
J. Y.
Chen
,
C. W.
Huang
,
C. H.
Chiu
,
Y. T.
Huang
,
T. K.
Huang
,
R. S.
He
, and
W. W.
Wu
,
Appl. Phys. Lett.
106
,
173103
(
2015
).
11.
K.
Park
and
J. S.
Lee
,
Nanotechnology
27
,
125203
(
2016
).
12.
S.
Rehman
,
J. H.
Hur
, and
D. K.
Kim
,
J. Phys. Chem. C
122
,
11076
(
2018
).
13.
Y.
Du
,
X.
Gao
,
X.
Zhang
, and
X.
Meng
,
Physica B
546
,
28
(
2018
).
14.
W. J.
Zhou
,
K. J.
Jin
,
H. Z.
Guo
,
C.
Ge
,
M.
He
, and
H. B.
Lu
,
J. Appl. Phys.
114
,
224503
(
2013
).
15.
S. J.
Choi
,
W. Y.
Yang
,
K. H.
Kim
,
Y. K.
Kyoung
,
J. G.
Chung
,
H. J.
Bae
,
J. C.
Park
,
K. K.
Kim
,
S.
Lee
, and
S.
Cho
,
Electron. Mater. Lett.
7
,
313
(
2011
).
16.
S. W.
Ryu
,
Y. B.
Ahn
,
H. J.
Kim
, and
Y.
Nishi
,
Appl. Phys. Lett.
100
,
133502
(
2012
).
17.
M.
Yin
,
P.
Zhou
,
H.
Lv
,
T.
Tang
,
B.
Chen
,
Y.
Lin
,
A.
Bao
, and
M.
Chi
, in
9th International Conference on Solid-State and Integrated-Circuit Technology, ICSICT 2008
(IEEE,
2008
), pp.
917
920
.
18.
S. P.
Adhikari
,
M. P.
Sah
,
H.
Kim
, and
L. O.
Chua
,
IEEE Trans. Circuits Syst. I: Regular Pap.
60
,
3008
(
2013
).
19.
H.
Choi
,
H.
Jung
,
J.
Lee
,
J.
Yoon
,
J.
Park
,
D. j
Seong
,
W.
Lee
,
M.
Hasan
,
G. Y.
Jung
, and
H.
Hwang
,
Nanotechnology
20
,
345201
(
2009
).
20.
F. C.
Lv
,
R.
Yang
, and
X.
Guo
,
Solid State Ionics
303
,
161
(
2017
).
21.
C. H.
Huang
,
J.-S.
Huang
,
C. C.
Lai
,
H. W.
Huang
,
S. J.
Lin
, and
Y. L.
Chueh
,
ACS Appl. Mater. Interfaces
5
,
6017
(
2013
).
22.
23.
R.
Pan
,
J.
Li
,
F.
Zhuge
,
L.
Zhu
,
L.
Liang
,
H.
Zhang
,
J.
Gao
,
H.
Cao
,
B.
Fu
, and
K.
Li
,
Appl. Phys. Lett.
108
,
013504
(
2016
).
24.
D.
Shang
,
Q.
Wang
,
L.
Chen
,
R.
Dong
,
X.
Li
, and
W.
Zhang
,
Phys. Rev. B
73
,
245427
(
2006
).
25.
J. J.
Yang
,
I. H.
Inoue
,
T.
Mikolajick
, and
C. S.
Hwang
,
MRS Bull.
37
,
131
(
2012
).
26.
S.
Hong
,
D.
Xiao Long
,
I.
Hwang
,
J. S.
Kim
,
Y.
Chang Park
,
S.-O.
Kang
, and
B.
Ho Park
,
Appl. Phys. Lett.
99
,
052105
(
2011
).
27.
X. L.
Deng
,
S.
Hong
,
I.
Hwang
,
J. S.
Kim
,
J. H.
Jeon
,
Y. C.
Park
,
J.
Lee
,
S. O.
Kang
,
T.
Kawai
, and
B. H.
Park
,
Nanoscale
4
,
2029
(
2012
).
28.
M.
Rozenberg
,
I.
Inoue
, and
M.
Sanchez
,
Phys. Rev. Lett.
92
,
178302
(
2004
).

Supplementary Material

You do not currently have access to this content.