Compared with graphene, 2H-MoS2 possesses a non-zero bandgap and thus has an unlimited potential for electronic, spintronic, and optoelectronic applications. Understanding of the phonon scattering mechanisms is crucial to its device applications because the heat flow and transport are the basic processes functioning at various temperatures. So far, the knowledge of the phonon anharmonicity of 2H-MoS2 is limited due to the availability from a narrow temperature range and the absence of the low frequency phonon information. Here, we report an experimental study on the temperature dependence of the frequency and linewidth of 2H-MoS2 by Raman scattering over a wide temperature range from 2.2 to 1000 K and down to the wavenumber of 10 cm−1. The cubic anharmonicity is found to be dominant at low temperatures, and quartic anharmonicity predominates at high temperatures. The obtained shear mode seems insensitive to the anharmonic effects. The damping effects are discussed based on the available experimental data. These phonon scattering behaviors of 2H-MoS2 are of great help to the future nanodevice developments and applications.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
, “
Two-dimensional gas of massless Dirac fermions in graphene
,”
Nature (London)
438
,
197
(
2005
).
2.
B.
Radisavljevic
,
A.
Radenovic
,
J.
Brivio
,
V.
Giacometti
, and
A.
Kis
, “
Single-layer MoS2 transistors
,”
Nat. Nanotechnol.
6
,
147
(
2011
).
3.
Q. H.
Wang
,
K. K.
Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
, “
Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
,”
Nat. Nanotechnol.
7
,
699
(
2012
).
4.
D. J.
Late
,
U.
Maitra
,
L. S.
Panchakarla
,
U. V.
Waghmare
, and
C. N. R.
Rao
, “
Temperature effects on the Raman spectra of graphenes: Dependence on the number of layers and doping
,”
J. Phys.: Condens. Matter
23
,
055303
(
2011
).
5.
A. S.
Pawbakea
,
K. K.
Mishra
,
L. G. B.
Machunoc
,
R. V.
Gelamoc
,
T. R.
Ravindranb
,
C. S.
Rout
, and
D. J.
Late
, “
Temperature and pressure dependent Raman spectroscopy of plasma treated multilayer graphene nanosheets
,”
Diamond Relat. Mater.
84
,
146
(
2018
).
6.
K. I.
Bolotin
,
K. J.
Sikes
,
Z.
Jiang
,
M.
Klima
,
G.
Fudenberg
,
J.
Hone
,
P.
Kim
, and
H. L.
Stormer
, “
Ultrahigh electron mobility in suspended graphene
,”
Solid State Commun.
146
,
351
(
2008
).
7.
K. F.
Mak
,
C.
Lee
,
J.
Hone
,
J.
Shan
, and
T. F.
Heinz
, “
Atomically thin MoS2: A new direct-gap semiconductor
,”
Phys. Rev. Lett.
105
,
136805
(
2010
).
8.
J. T.
Ye
,
Y. J.
Zhang
,
R.
Akashi
,
M. S.
Bahramy
,
R.
Arita
, and
Y.
Iwasa
, “
Superconducting dome in a gate-tuned band insulator
,”
Science
338
,
1193
(
2012
).
9.
Z. Y.
Cao
,
J. W.
Hu
,
A. F.
Goncharov
, and
X. J.
Chen
, “
Nontrivial metallic state of molybdenum disulfide
,”
Phys. Rev. B
97
,
214519
(
2018
).
10.
Y.
Yoon
,
K.
Ganapathi
, and
S.
Salahuddin
, “
How good can monolayer MoS2 transistors be?
,”
Nano Lett.
11
,
3768
(
2011
).
11.
H.
Zeng
,
J. F.
Dai
,
W.
Yao
,
D.
Xiao
, and
X. D.
Cui
, “
Valley polarization in MoS2 monolayers by optical pumping
,”
Nat. Nanotechnol.
7
,
490
(
2012
).
12.
D.
Xiao
,
W.
Yao
, and
Q.
Niu
, “
Valley-contrasting physics in graphene: Magnetic moment and topological transport
,”
Phys. Rev. Lett.
99
,
236809
(
2007
).
13.
Z. Y.
Zhu
,
Y. C.
Cheng
, and
U.
Schwingenschlögl
, “
Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors
,”
Phys. Rev. B
84
,
153402
(
2011
).
14.
M.
Balkanski
,
R. F.
Wallis
, and
E.
Haro
, “
Anharmonic effects in light scattering due to optical phonons in silicon
,”
Phys. Rev. B
28
,
1928
(
1983
).
15.
B. C.
Johnson
,
B.
Haberl
,
J. E.
Bradby
,
J. C.
McCallum
, and
J. S.
Williams
, “
Temperature dependence of Raman scattering from the high-pressure phases of Si induced by indentation
,”
Phys. Rev. B
83
,
235205
(
2011
).
16.
T. L.
Feng
and
X. L.
Ruan
, “
Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids
,”
Phys. Rev. B
93
,
045202
(
2016
).
17.
J. J.
Lin
,
L. W.
Guo
,
Q. S.
Huang
,
Y. P.
Jia
,
K.
Li
,
X. F.
Lai
, and
X. L.
Chen
, “
Anharmonic phonon effects in Raman spectra of unsupported vertical graphene sheets
,”
Phys. Rev. B
83
,
125430
(
2011
).
18.
D. J.
Late
, “
Temperature dependent phonon shifts in few-layer black phosphorus
,”
ACS Appl. Mater. Interfaces
7
,
5857
(
2015
).
19.
M.
Thripuranthaka
and
D. J.
Late
, “
Temperature dependent phonon shifts in single-layer WS2
,”
ACS Appl. Mater. Interfaces
6
,
1158
(
2014
).
20.
A. S.
Pawbake
,
A.
Date
,
S. R.
Jadkar
, and
D. J.
Late
,
ChemistrySelect
1
,
5380
(
2016
).
21.
M. K.
Jana
,
A.
Singh
,
D. J.
Late
,
C. R.
Rajamathi
,
K.
Biswas
,
C.
Felser
,
U. V.
Waghmare
, and
C. N. R.
Rao
, “
A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2
,”
J. Phys.: Condens. Matter
27
,
285401
(
2015
).
22.
D. J.
Late
, “
Temperature-dependent phonon shifts in atomically thin MoTe2 nanosheets
,”
Appl. Mater. Today
5
,
98
(
2016
).
23.
S.
Najmaei
,
P. M.
Ajayan
, and
J.
Lou
, “
Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers
,”
Nanoscale
5
,
9758
(
2013
).
24.
S.
Sahoo
,
A. P. S.
Gaur
,
M.
Ahmadi
,
M. J.-F.
Guinel
, and
S.
Katiyar
, “
Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2
,”
J. Phys. Chem. C
117
,
9042
(
2013
).
25.
N. A.
Lanzillo
,
A. G.
Birdwell
,
M.
Amani
,
F. J.
Crowne
,
P. B.
Shah
,
S.
Najmaei
,
Z.
Liu
,
P. M.
Ajayan
,
J.
Lou
,
M.
Dubey
,
S. K.
Nayak
, and
T. P.
O'Regan
, “
Temperature-dependent phonon shifts in monolayer MoS2
,”
Appl. Phys. Lett.
103
,
093102
(
2013
).
26.
A.
Taube
,
J.
Judek
,
C.
Jastrzebski
,
A.
Duzynska
,
K.
Świtkowski
, and
M.
Zdrojek
, “
Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer
,”
ACS Appl. Mater. Interfaces
6
,
8959
(
2014
).
27.
M.
Thripuranthaka
,
R. V.
Kashid
,
C. S.
Rout
, and
D. J.
Late
, “
Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets
,”
Appl. Phys. Lett.
104
,
081911
(
2014
).
28.
A. S.
Pawbake
,
M. S.
Pawar
,
S. R.
Jadkarb
, and
D. J.
Late
, “
Large area chemical vapor deposition of monolayer transition metal dichalcogenides and their temperature dependent Raman spectroscopy studies
,”
Nanoscale
8
,
3008
(
2016
).
29.
Z.
Dohcević-Mitrović
,
Z. V.
Popovíc
, and
M.
Šćepanović
, “
Anharmonicity effects in nanocrystals studied by Raman scattering spectroscopy
,”
Acta Phys. Pol. A
116
,
36
(
2009
).
30.
L. C.
Chen
,
Z. Y.
Cao
,
H.
Yu
,
B. B.
Jiang
,
L.
Su
,
L. D.
Chen
, and
X. J.
Chen
, “
Phonon anharmonicity in thermoelectric palladium sulfide by Raman spectroscopy
,”
Appl. Phys. Lett.
113
,
022105
(
2018
).
31.
C. K.
Gan
and
Y. Y. F.
Liu
, “
Direct calculation of the linear thermal expansion coefficients of MoS2 via symmetry-preserving deformations
,”
Phys. Rev. B
94
,
134303
(
2016
).
32.
P. G.
Klemens
, “
Anharmonic decay of optical phonons
,”
Phys. Rev.
148
,
845
(
1966
).
33.
T. R.
Hart
, “
Temperature dependence of Raman scattering in silicon
,”
Phys. Rev. B
1
,
638
(
1970
).
34.
A.
Molina-Sánchez
and
L.
Wirtz
, “
Phonons in single-layer and few-layer MoS2 and WS2
,”
Phys. Rev. B
84
,
155413
(
2011
).
35.
N.
Wakabayashi
,
H. G.
Smith
, and
R. M.
Nicklow
, “
Lattice dynamics of hexagonal MoS2 studied by neutron scattering
,”
Phys. Rev. B.
12
,
659
(
1975
).
36.
S. H.
Ei-Mahblawy
and
B. L.
Evans
, “
Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe, WSe, and MoTe
,”
Phys. Status Solidi B
79
,
713
(
1977
).
37.
J. Y.
Kim
,
S. M.
Choi
,
W. S.
Seo
, and
W. S.
Cho
, “
Thermal and electronic properties of exfoliated metal chalcogenides
,”
Bull. Korean Chem. Soc.
31
,
3225
(
2010
).
38.
H.
Guo
,
T.
Yang
,
P.
Tao
, and
Z.
Zhang
, “
Theoretical study of thermoelectric properties of MoS2
,”
Chin. Phys. B
23
,
017201
(
2014
).
39.
R.
Yan
,
J. R.
Simpson
,
S.
Bertolazzi
,
J.
Brivio
,
M.
Watsom
,
X. F.
Wu
,
A.
Kis
,
T. F.
Luo
,
A. R. H.
Walker
, and
H. G.
Xing
, “
Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy
,”
ACS Nano
8
,
986
(
2014
).
40.
Y.
Cai
,
J.
Lan
,
G.
Zhang
, and
Y. W.
Zhang
, “
Lattice vibrational modes and phonon thermal conductivity of monolayer MoS2
,”
Phys. Rev. B
89
,
035438
(
2014
).
41.
A.
Aiyiti
,
S. Q.
Hu
,
C. R.
Wang
,
Q.
Xi
,
Z. F.
Cheng
,
M. G.
Xia
,
Y. L.
Ma
,
J. B.
Wu
,
J.
Guo
,
Q. L.
Wang
,
J.
Zhou
,
J.
Chen
,
X. F.
Xu
, and
B. W.
Li
, “
Thermal conductivity of suspended few-layer MoS2
,”
Nanoscale
10
,
2727
(
2018
).
42.
W.
Li
,
J.
Carrete
, and
N.
Mingo
, “
Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles
,”
Appl. Phys. Lett.
103
,
253103
(
2013
).
43.
Y. C.
Ding
,
M.
Chen
, and
B.
Xiao
, “
Anisotropy in lattice thermal conductivity tensor of bulk hexagonal-MT2 (M = W, Mo and T = S and Se) by first principles phonon calculations
,”
RSC Adv.
6
,
7817
(
2016
).
44.
T. R.
Kakuda
,
A. M.
Limarga
,
T. D.
Bennett
, and
D. R.
Clarke
, “
Evolution of thermal properties of EB-PVD 7YSZ thermal barrier coatings with thermal cycling
,”
Acta Mater.
57
,
2583
(
2009
).
You do not currently have access to this content.