The realization of efficient mixing of samples inside a microfluidic channel is essential for performing numerous biological assays in miniaturized total analysis systems. The low Reynolds number flows at the microscale create laminar streams inside the microchannel, limiting flow mixing to a molecular diffusion level. In this paper, we propose a simple and efficient acoustofluidic mixing technique inside a single-layered polydimethylsiloxane (PDMS) microfluidic channel. The proposed surface acoustic wave (SAW)-based system composed of a straight interdigitated transducer (IDT) is positioned beneath the PDMS microchannel. Fluorescein dye dissolved in deionized water (sample fluid) and deionized water (sheath fluid) was introduced through the first and second inlets of the PDMS microchannel, respectively. Their flow rates were controlled such that the sample fluid with fluorescein dye was hydrodynamically focused close to the bottom of the microchannel by the sheath fluid. High-frequency (140 MHz) SAWs, generated from the IDT placed right beneath the first outlet, mixed the two fluids under the influence of strong acoustic streaming flows. The mixed samples were then collected at the two outlet ports for further analysis of the mixing efficiency. The developed acoustofluidic mixing device required an input voltage of 12 Vpp at a total flow rate of 50 μl/min to realize complete mixing. At a similar applied voltage, the throughput of the proposed device could be further increased to 200 μl/min with a mixing efficiency of >90%.

1.
G.
Schabas
,
H.
Yusuf
,
M. G.
Moffitt
, and
D.
Sinton
,
Langmuir
24
(
3
),
637
643
(
2008
).
2.
Y.
Xie
,
D.
Ahmed
,
M. I.
Lapsley
,
S. C.
Lin
,
A. A.
Nawaz
,
L.
Wang
, and
T. J.
Huang
,
Anal. Chem.
84
(
17
),
7495
7501
(
2012
).
3.
J. F.
Dishinger
,
K. R.
Reid
, and
R. T.
Kennedy
,
Anal. Chem.
81
(
8
),
3119
3127
(
2009
).
4.
B.-R.
Oh
,
N.-T.
Huang
,
W.
Chen
,
J. H.
Seo
,
P.
Chen
,
T. T.
Cornell
,
T. P.
Shanley
,
J.
Fu
, and
K.
Kurabayashi
,
ACS Nano
8
(
3
),
2667
2676
(
2014
).
5.
Y.
Song
,
J.
Hormes
, and
C. S.
Kumar
,
Small
4
(
6
),
698
711
(
2008
).
6.
S.
Yang
,
F.
Guo
,
B.
Kiraly
,
X.
Mao
,
M.
Lu
,
K. W.
Leong
, and
T. J.
Huang
,
Lab Chip
12
(
12
),
2097
2102
(
2012
).
7.
A. A.
Bhagat
,
H.
Bow
,
H. W.
Hou
,
S. J.
Tan
,
J.
Han
, and
C. T.
Lim
,
Med. Biol. Eng. Comput.
48
(
10
),
999
1014
(
2010
).
8.
C. W.
Shields
,
C. D.
Reyes
, and
G. P.
Lopez
,
Lab Chip
15
(
5
),
1230
1249
(
2015
).
9.
C.-H.
Hsu
and
A.
Folch
,
Appl. Phys. Lett.
89
(
14
),
144102
(
2006
).
10.
A. D.
Stroock
,
S. K.
Dertinger
,
A.
Ajdari
,
I.
Mezić
,
H. A.
Stone
, and
G. M.
Whitesides
,
Science
295
(
5555
),
647
651
(
2002
).
11.
D.
Therriault
,
S. R.
White
, and
J. A.
Lewis
,
Nat. Mater.
2
(
4
),
265
271
(
2003
).
12.
C. O.-K.
Chen
and
C.-C.
Cho
,
Microfluid. Nanofluid.
5
(
6
),
785
793
(
2008
).
13.
E.
Choi
,
K.
Kwon
,
S. J.
Lee
,
D.
Kim
, and
J.
Park
,
Lab Chip
15
(
8
),
1794
1798
(
2015
).
14.
C. Y.
Lim
,
Y. C.
Lam
, and
C.
Yang
,
Biomicrofluidics
4
(
1
),
14101
(
2010
).
15.
K. S.
Ryu
,
K.
Shaikh
,
E.
Goluch
,
Z.
Fan
, and
C.
Liu
,
Lab Chip
4
(
6
),
608
613
(
2004
).
16.
Y.
Wang
,
J.
Zhe
,
B. T. F.
Chung
, and
P.
Dutta
,
Microfluid. Nanofluid.
4
(
5
),
375
389
(
2007
).
17.
G. P.
Zhu
and
N. T.
Nguyen
,
Lab Chip
12
(
22
),
4772
4780
(
2012
).
18.
A. N.
Hellman
,
K. R.
Rau
,
H. H.
Yoon
,
S.
Bae
,
J. F.
Palmer
,
K. S.
Phillips
,
N. L.
Allbritton
, and
V.
Venugopalan
,
Anal. Chem.
79
(
12
),
4484
4492
(
2007
).
19.
D.
Ahmed
,
X.
Mao
,
J.
Shi
,
B. K.
Juluri
, and
T. J.
Huang
,
Lab Chip
9
(
18
),
2738
2741
(
2009
).
20.
P. H.
Huang
,
C. Y.
Chan
,
P.
Li
,
N.
Nama
,
Y.
Xie
,
C. H.
Wei
,
Y.
Chen
,
D.
Ahmed
, and
T. J.
Huang
,
Lab Chip
15
(
21
),
4166
4176
(
2015
).
21.
N.
Nama
,
P. H.
Huang
,
T. J.
Huang
, and
F.
Costanzo
,
Lab Chip
14
(
15
),
2824
2836
(
2014
).
22.
A. R.
Rezk
,
A.
Qi
,
J. R.
Friend
,
W. H.
Li
, and
L. Y.
Yeo
,
Lab Chip
12
(
4
),
773
779
(
2012
).
23.
T.-D.
Luong
,
V.-N.
Phan
, and
N.-T.
Nguyen
,
Microfluid. Nanofluid.
10
(
3
),
619
625
(
2010
).
24.
R.
Shilton
,
M. K.
Tan
,
L. Y.
Yeo
, and
J. R.
Friend
,
J. Appl. Phys.
104
(
1
),
014910
(
2008
).
25.
W.-K.
Tseng
,
J.-L.
Lin
,
W.-C.
Sung
,
S.-H.
Chen
, and
G.-B.
Lee
,
J. Micromech. Microeng.
16
(
3
),
539
548
(
2006
).
26.
Q.
Zeng
,
F.
Guo
,
L.
Yao
,
H. W.
Zhu
,
L.
Zheng
,
Z. X.
Guo
,
W.
Liu
,
Y.
Chen
,
S. S.
Guo
, and
X. Z.
Zhao
,
Sens. Actuators B: Chem.
160
(
1
),
1552
1556
(
2011
).
27.
G.
Destgeer
and
H. J.
Sung
,
Lab Chip
15
(
13
),
2722
2738
(
2015
).
28.
D.
Ahmed
,
X.
Mao
,
B. K.
Juluri
, and
T. J.
Huang
,
Microfluid. Nanofluid.
7
(
5
),
727
731
(
2009
).
29.
P. H.
Huang
,
M.
Ian Lapsley
,
D.
Ahmed
,
Y.
Chen
,
L.
Wang
, and
T.
Jun Huang
,
Appl. Phys. Lett.
101
(
14
),
141101
(
2012
).
30.
P. H.
Huang
,
Y.
Xie
,
D.
Ahmed
,
J.
Rufo
,
N.
Nama
,
Y.
Chen
,
C. Y.
Chan
, and
T. J.
Huang
,
Lab Chip
13
(
19
),
3847
3852
(
2013
).
31.
J.
Nam
and
C. S.
Lim
,
Sens. Actuators B-Chem.
255
,
3434
3440
(
2018
).
32.
G.
Destgeer
,
H.
Cho
,
B. H.
Ha
,
J. H.
Jung
,
J.
Park
, and
H. J.
Sung
,
Lab Chip
16
(
4
),
660
667
(
2016
).
33.
G.
Destgeer
,
B. H.
Ha
,
J. H.
Jung
, and
H. J.
Sung
,
Lab Chip
14
(
24
),
4665
4672
(
2014
).
34.
G.
Destgeer
,
K. H.
Lee
,
J. H.
Jung
,
A.
Alazzam
, and
H. J.
Sung
,
Lab Chip
13
(
21
),
4210
4216
(
2013
).
35.
G.
Destgeer
,
S.
Im
,
B.
Hang Ha
,
J.
Ho Jung
,
M.
Ahmad Ansari
, and
H.
Jin Sung
,
Appl. Phys. Lett.
104
(
2
),
023506
(
2014
).
36.
J. H.
Jung
,
G.
Destgeer
,
J.
Park
,
H.
Ahmed
,
K.
Park
, and
H. J.
Sung
,
RSC Advances
8
(
6
),
3206
3212
(
2018
).
37.
J.
Nam
,
W. S.
Jang
, and
C. S.
Lim
,
Sens. Actuators B: Chem.
258
,
991
997
(
2018
).
38.
J.
Park
,
J. H.
Jung
,
K.
Park
,
G.
Destgeer
,
H.
Ahmed
,
R.
Ahmad
, and
H. J.
Sung
,
Lab Chip
18
(
3
),
422
432
(
2018
).
39.
G.
Destgeer
,
B. H.
Ha
,
J.
Park
,
J. H.
Jung
,
A.
Alazzam
, and
H. J.
Sung
,
Anal. Chem.
87
(
9
),
4627
4632
(
2015
).
40.
G.
Destgeer
,
J. H.
Jung
,
J.
Park
,
H.
Ahmed
,
K.
Park
,
R.
Ahmad
, and
H. J.
Sung
,
RSC Adv.
7
(
36
),
22524
22530
(
2017
).
41.
J.
Park
,
G.
Destgeer
,
H.
Kim
,
Y.
Cho
, and
H. J.
Sung
,
Lab Chip
18
(
19
),
2936
2945
(
2018
).
42.
B. H.
Ha
,
K. S.
Lee
,
G.
Destgeer
,
J.
Park
,
J. S.
Choung
,
J. H.
Jung
,
J. H.
Shin
, and
H. J.
Sung
,
Sci. Rep.
5
,
11851
(
2015
).
43.
B. H.
Ha
,
J.
Park
,
G.
Destgeer
,
J. H.
Jung
, and
H. J.
Sung
,
Anal. Chem.
87
(
22
),
11568
11574
(
2015
).
44.
J.
Park
,
B. H.
Ha
,
G.
Destgeer
,
J. H.
Jung
, and
H. J.
Sung
,
RSC Adv.
6
(
40
),
33937
33944
(
2016
).
45.
J.
Park
,
J. H.
Jung
,
G.
Destgeer
,
H.
Ahmed
,
K.
Park
, and
H. J.
Sung
,
Lab Chip
17
(
6
),
1031
1040
(
2017
).
46.
H.
Ahmed
,
G.
Destgeer
,
J.
Park
,
M.
Afzal
, and
H. J.
Sung
,
Anal. Chem.
90
(
14
),
8546
8552
(
2018
).
47.
H.
Ahmed
,
G.
Destgeer
,
J.
Park
,
J. H.
Jung
,
R.
Ahmad
,
K.
Park
, and
H. J.
Sung
,
Anal. Chem.
89
(
24
),
13575
13581
(
2017
).
48.
H.
Ahmed
,
G.
Destgeer
,
J.
Park
,
J. H.
Jung
, and
H. J.
Sung
,
Adv. Sci. (Weinh)
5
(
2
),
1700285
(
2018
).

Supplementary Material

You do not currently have access to this content.