We report enhanced near-infrared (NIR) electroluminescence from a Nd3+-complex with thenoyltrifluoroacetone and 1,10-phenanthroline ligands. The NIR-emitting complex was blended into an exciplex-forming co-host system comprising 2,7-bis(diphenylphosphoryl)-9,9′-spirobifluorene as the electron transport material and 4,4′,4″-tris(carbazol-9-yl)triphenylamine as the hole transport material in solution-processed small molecule organic light-emitting diodes (OLEDs). This binary ambipolar host system favors direct charge trapping and exciton formation on the Nd3+-complex molecules. Efficient energy transfer from the singlet and triplet exciplexes formed between the host molecules to the Nd3+ ions contributes to the enhanced luminescence efficiency. The photoluminescence quantum yield of this blend is 1.2%, and the optimized OLED shows a maximum electroluminescence external quantum efficiency of 0.034%. The device also exhibits a low efficiency roll-off of only 12% over a current density range of 100 mA/cm2, due to the reduced triplet-polaron annihilation.

1.
U.
Cho
,
D. P.
Riordan
,
P.
Ciepla
,
K. S.
Kocherlakota
,
J. K.
Chen
, and
P. B.
Harbury
,
Nat. Chem. Biol.
14
,
15
(
2018
).
2.
H. Q.
Ye
,
Z.
Li
,
Y.
Peng
,
C. C.
Wang
,
T. Y.
Li
,
Y. X.
Zheng
,
A.
Sapelkin
,
G.
Adamopoulos
,
I.
Hernández
,
P. B.
Wyatt
, and
W. P.
Gillin
,
Nat. Mater.
13
,
382
(
2014
).
3.
H.
Lin
,
T.
Yu
,
M.-K.
Tsang
,
G.
Bai
,
Q.
Zhang
, and
J.
Hao
,
Appl. Phys. Lett.
108
,
041902
(
2016
).
4.
J.
Xu
,
S.
Tanabe
,
A. D.
Sontakke
, and
J.
Ueda
,
Appl. Phys. Lett.
107
,
081903
(
2015
).
5.
F.
Monteiro
,
T.
Guerreiro
,
B.
Sanguinetti
, and
H.
Zbinden
,
Appl. Phys. Lett.
103
,
051109
(
2013
).
6.
C.
Grivas
and
M.
Pollnau
,
Lasers Photonics Rev.
6
,
419
(
2012
).
7.
K.
Jinnai
,
R.
Kabe
, and
C.
Adachi
,
Chem. Commun.
53
,
5457
(
2017
).
8.
H.
Wei
,
G.
Yu
,
Z.
Zhao
,
Z.
Liu
,
Z.
Bian
, and
C.
Huang
,
Dalton. Trans.
42
,
8951
(
2013
).
9.
S.
Penna
,
A.
Reale
,
R.
Pizzoferrato
,
G. M.
Tosi Beleffi
,
D.
Musella
, and
W. P.
Gillin
,
Appl. Phys. Lett.
91
,
021106
(
2007
).
10.
F. X.
Zang
,
W. L.
Li
,
Z. R.
Hong
,
H. Z.
Wei
,
M. T.
Li
, and
X. Y.
Sun
,
Appl. Phys. Lett.
84
,
5115
(
2004
).
11.
T.
Sano
,
M.
Fujita
,
T.
Fujii
, and
Y.
Hamada
,
Jpn. J. Appl. Phys. Part I
34
,
1883
(
1995
).
12.
A.
Shahalizad
,
A.
D'Aléo
,
C.
Andraud
,
M. H.
Sazzad
,
D.-H.
Kim
,
Y.
Tsuchiya
,
J. C.
Ribierre
,
J. M.
Nunzi
, and
C.
Adachi
,
Org. Electron.
44
,
50
(
2017
).
13.
J.
Chen
,
C.
Shi
,
Q.
Fu
,
F.
Zhao
,
Y.
Hu
,
Y.
Feng
, and
D.
Ma
,
J. Mater. Chem.
22
,
5164
(
2012
).
14.
J.-W.
Kang
,
S.-H.
Lee
,
H.-D.
Park
,
W.-I. K.
Jeong
,
K.-M.
Yoo
,
Y.-S.
Park
, and
J.-J.
Kim
,
Appl. Phys. Lett.
90
,
223508
(
2007
).
15.
X.
Du
,
X.
Yang
,
J.
Zhao
,
H.
Lin
,
C.
Zheng
, and
S.
Tao
,
Org. Electron.
38
,
344
(
2016
).
16.
A.
D'Aléo
,
A.
Picot
,
A.
Beeby
,
J. A. G.
Williams
,
B.
Le Guennic
,
C.
Andraud
, and
O.
Maury
,
Inorg. Chem.
47
,
10258
(
2008
).
17.
A.
D´Aléo
,
F.
Pointillart
,
L.
Ouahab
,
C.
Andraud
, and
O.
Maury
,
Coord. Chem. Rev.
256
,
1604
(
2012
).
18.
Y.-S.
Park
,
S.
Lee
,
K.-H.
Kim
,
S.-Y.
Kim
,
J.-H.
Lee
, and
J.-J.
Kim
,
Adv. Funct. Mater.
23
,
4914
(
2013
).
19.
X.
Liu
,
B.
Yao
,
Z.
Zhang
,
X.
Zhao
,
B.
Zhang
,
W.-Y.
Wong
,
Y.
Cheng
, and
Z.
Xie
,
J. Mater. Chem. C
4
,
5787
(
2016
).
20.
D.-Y.
Zhou
,
L.-S.
Cui
,
Y.-J.
Zhang
,
L.-S.
Liao
, and
H.
Aziz
,
Appl. Phys. Lett.
105
,
153302
(
2014
).
21.
W.
Song
and
J. Y.
Lee
,
Appl. Phys. Lett.
106
,
123306
(
2015
).
22.
K.
Goushi
,
K.
Yoshida
,
K.
Sato
, and
C.
Adachi
,
Nat. Photonics
6
,
253
(
2012
).
23.
L. H.
Slooff
,
A.
Polman
,
F.
Cacialli
,
R. H.
Friend
,
G. A.
Hebbink
,
F. C. J. M.
van Veggel
, and
D. N.
Reinhoudt
,
Appl. Phys. Lett.
78
,
2122
(
2001
).
24.
A.
O'Riordan
,
R.
Van Deun
,
E.
Mairiaux
,
S.
Moynihan
,
P.
Fias
,
P.
Nockemann
,
K.
Binnemans
, and
G.
Redmond
,
Thin Solid Films
516
,
5098
(
2008
).
25.
A.
O'Riordan
,
E.
O'Connor
,
S.
Moynihan
,
P.
Nockemann
,
P.
Fias
,
R.
Van Deun
,
D.
Cupertino
,
P.
Mackie
, and
G.
Redmond
,
Thin Solid Films
497
,
299
(
2006
).
26.
Y.
Kawamura
,
Y.
Wada
,
Y.
Hasegawa
,
M.
Iwamuro
,
T.
Kitamura
, and
S.
Yanagida
,
Appl. Phys. Lett.
74
,
3245
(
1999
).
27.
O. M.
Kheris
,
R. J.
Curry
,
M.
Somerton
, and
W. P.
Gillin
,
J. Appl. Phys.
88
,
777
(
2000
).
28.
Z.-Q.
Chen
,
F.
Ding
,
Z.-Q.
Bian
, and
C.-H.
Huang
,
Org. Electron.
11
,
369
(
2010
).
29.
R.
Nagata
,
H.
Nakanotani
, and
C.
Adachi
,
Adv. Mater.
29
,
1604265
(
2016
).
30.
A.
Graf
,
C.
Murawski
,
Y.
Zakharko
,
J.
Zaumseil
, and
M. C.
Gather
,
Adv. Mater.
30
,
1706711
(
2018
).
31.
H.
Xu
,
Q.
Sun
,
Z.
An
,
Y.
Wei
, and
X.
Liu
,
Coord. Chem. Rev.
293-294
,
228
(
2015
).
32.
C.
Adachi
,
M. A.
Baldo
, and
S. R.
Forrest
,
J. Appl. Phys.
87
,
8049
(
2000
).
33.
T. W.
Canzler
and
J.
Kido
,
Org. Electron.
7
,
29
(
2006
).
34.
S.
Zhang
,
G. A.
Turnbull
, and
I. D. W.
Samuel
,
Org. Electron.
13
,
3091
(
2012
).
35.
J.
Mezyk
,
D.
Di Nuzzo
,
A.
Mech
,
R.
Tubino
, and
F.
Meinardi
,
J. Chem. Phys.
132
,
024504
(
2010
).
36.
M. A.
Baldo
,
C.
Adachi
, and
S. R.
Forrest
,
Phys. Rev. B
62
,
10967
(
2000
).
37.
K.
Hayashi
,
H.
Nakanotani
,
M.
Inoue
,
K.
Yoshida
,
O.
Mikhnenko
,
T.-Q.
Nguyen
, and
C.
Adachi
,
Appl. Phys. Lett.
106
,
093301
(
2015
).
38.
S.
Reineke
,
G.
Schwartz
,
K.
Walzer
, and
K.
Leo
,
Appl. Phys. Lett.
91
,
123508
(
2007
).
39.
G.
He
,
M.
Pfeiffer
,
K.
Leo
,
M.
Hofmann
,
J.
Birnstock
,
R.
Pudzich
, and
J.
Salbeck
,
Appl. Phys. Lett.
85
,
3911
(
2004
).
40.
S.
Ying
,
D.
Yang
,
X.
Qiao
,
Y.
Dai
,
Q.
Sun
,
J.
Chen
,
T.
Ahamad
,
S. M.
Alshehri
, and
D.
Ma
,
J. Mater. Chem. C
6
,
10793
(
2018
).
41.
B.
Zhao
,
H.
Zhang
,
Y.
Miao
,
Z.
Wang
,
L.
Gao
,
H.
Wang
,
Y.
Hao
,
B.
Xuab
, and
W.
Li
,
J. Mater. Chem. C
5
,
12182
(
2017
).
42.
Y.
Yin
,
X.
Piao
,
Y.
Li
,
Y.
Wang
,
J.
Liu
,
K.
Xu
, and
W.
Xiea
,
Appl. Phys. Lett.
101
,
063306
(
2012
).
43.
J.
Lee
,
J.-I.
Lee
,
J. Y.
Lee
, and
H. Y.
Chu
,
Appl. Phys. Lett.
94
,
193305
(
2009
).
44.
Q.
Xin
,
W. L.
Li
,
G. B.
Che
,
W. M.
Su
,
X. Y.
Sun
,
B.
Chu
, and
B.
Li
,
Appl. Phys. Lett.
89
,
223524
(
2006
).

Supplementary Material

You do not currently have access to this content.