The growth of Mg-doped GaN over a wide doping range is demonstrated via pulsed sputtering deposition (PSD). All samples show p-type conductivity without any post-growth annealing, and their room temperature (RT) hole concentration can be controlled for as much as two orders of magnitude from 2.8 × 1016 cm−3 to 2.7 × 1018 cm−3. No apparent structural degradation is observed, even for the most heavily Mg-doped sample with an RT hole concentration of 2.7 × 1018 cm−3. The compensation ratio is lower than 10% for the heavily Mg-doped samples, which explains the high conductivity of PSD-grown p-type GaN. These results indicate the strong potential of PSD for the growth of high-quality p-type GaN and its application to p–n junction devices.

1.
S.
Nakamura
,
M.
Senoh
,
N.
Iwasa
, and
S. I.
Nagahama
,
Appl. Phys. Lett.
67
,
1868
(
1995
).
2.
S.
Nakamura
,
M.
Senoh
,
S. I.
Nagahama
,
N.
Iwasa
,
T.
Yamada
,
T.
Matsushita
,
H.
Kiyoku
, and
Y.
Sugimoto
,
Jpn. J. Appl. Phys. Part 2
35
,
L74
(
1996
).
3.
H.
Okumura
,
Jpn. J. Appl. Phys. Part 1
45
,
7565
(
2006
).
4.
J. A.
Freitas
,
J. C.
Culbertson
,
N. A.
Mahadik
,
T.
Sochacki
,
M.
Bockowski
, and
M.
Iwinska
,
Cryst. Growth Des.
15
,
4837
(
2015
).
5.
H.
Ishida
,
R.
Kajitani
,
Y.
Kinoshita
,
H.
Umeda
,
S.
Ujita
,
M.
Ogawa
,
K.
Tanaka
,
T.
Morita
,
S.
Tamura
,
M.
Ishida
, and
T.
Ueda
, in
International Electron Devices Meeting
(IEEE,
2016
), pp.
20.4.1
20.4.4
.
6.
H.
Amano
,
M.
Kito
,
K.
Hiramatsu
, and
I.
Akasaki
,
Jpn. J. Appl. Phys. Part 2
28
,
L2112
(
1989
).
7.
I.
Akasaki
and
H.
Amano
,
Jpn. J. Appl. Phys. Part 1
45
,
9001
(
2006
).
8.
W.
Lee
,
J.
Limb
,
J. H.
Ryou
,
D.
Yoo
,
M. A.
Ewing
,
Y.
Korenblit
, and
R. D.
Dupuis
,
J. Disp. Technol.
3
,
126
(
2007
).
9.
S.
Nakamura
,
T.
Mukai
,
M.
Senoh
, and
N.
Iwasa
,
Jpn. J. Appl. Phys. Part 2
31
,
L139
(
1992
).
10.
H.
Xing
,
D. S.
Green
,
H.
Yu
,
T.
Mates
,
P.
Kozodoy
,
S.
Keller
,
S. P.
Denbaars
, and
U. K.
Mishra
,
Jpn. J. Appl. Phys. Part 1
42
,
50
(
2003
).
11.
Z.
Benzarti
,
I.
Halidou
,
Z.
Bougrioua
,
T.
Boufaden
, and
B.
El Jani
,
J. Cryst. Growth
310
,
3274
(
2008
).
12.
E.
Nakamura
,
K.
Ueno
,
J.
Ohta
,
H.
Fujioka
, and
M.
Oshima
,
Appl. Phys. Lett.
104
,
051121
(
2014
).
13.
T.
Itoh
,
A.
Kobayashi
,
K.
Ueno
,
J.
Ohta
, and
H.
Fujioka
,
Sci. Rep.
6
,
29500
(
2016
).
14.
Y.
Arakawa
,
K.
Ueno
,
H.
Noguchi
,
J.
Ohta
, and
H.
Fujioka
,
Jpn. J. Appl. Phys. Part 1
56
,
031002
(
2017
).
15.
Y.
Arakawa
,
K.
Ueno
,
A.
Kobayashi
,
J.
Ohta
, and
H.
Fujioka
,
APL Mater.
4
,
086103
(
2016
).
16.
M.
Horita
,
S.
Takashima
,
R.
Tanaka
,
H.
Matsuyama
,
K.
Ueno
,
M.
Edo
,
T.
Takahashi
,
M.
Shimizu
, and
J.
Suda
,
Jpn. J. Appl. Phys. Part 1
56
,
031001
(
2017
).
17.
L. T.
Romano
,
M.
Kneissl
,
J. E.
Northrup
,
C. G.
Van De Walle
, and
D. W.
Treat
,
Appl. Phys. Lett.
79
,
2734
(
2001
).
18.
Z.
Liliental-Weber
,
M.
Benamara
,
W.
Swider
,
J.
Washburn
,
I.
Grzegory
,
S.
Porowski
,
D. J. H.
Lambert
,
C. J.
Eiting
, and
R. D.
Dupuis
,
Appl. Phys. Lett.
75
,
4159
(
1999
).
19.
R. R.
Lieten
,
V.
Motsnyi
,
L.
Zhang
,
K.
Cheng
,
M.
Leys
,
S.
Degroote
,
G.
Buchowicz
,
O.
Dubon
, and
G.
Borghs
,
J. Phys. D. Appl. Phys.
44
,
135406
(
2011
).
20.
J. S.
Im
,
A.
Moritz
,
F.
Steuber
,
V.
Härle
,
F.
Scholz
, and
A.
Hangleiter
,
Appl. Phys. Lett.
70
,
631
(
1997
).
21.
C. G.
Van De Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
22.
G.
Miceli
and
A.
Pasquarello
,
Phys. Rev. B
93
,
165207
(
2016
).
23.
M. A.
Reshchikov
,
D. O.
Demchenko
,
J. D.
McNamara
,
S.
Fernández-Garrido
, and
R.
Calarco
,
Phys. Rev. B
90
,
035207
(
2014
).
24.
M. A.
Reshchikov
,
J. D.
McNamara
,
S.
Fernández-Garrido
, and
R.
Calarco
,
Phys. Rev. B
87
,
115205
(
2013
).
25.
M. A.
Reshchikov
and
H.
Morko̧
,
J. Appl. Phys.
97
,
061301
(
2005
).
You do not currently have access to this content.