The electrostatic potential of p+-n+ junctions, as in Esaki (tunnel) diodes, originates from the Coulomb potentials of ionized dopants in the depletion-layer, but it has been modeled so far based on uniform space-charge regions, ignoring the discrete and random dopant distribution. This model can explain well the band-to-band tunneling (BTBT) between the opposite bands of the quasineutral regions (conduction band in the n+-region and valence band in the p+-region). In this letter, we show that a BTBT transport model should contain the mechanism of tunneling via “inherent” localized bandgap-states, created by dopant-induced potential fluctuation, which becomes detectable as a parallel transport mechanism in nanoscale Esaki diodes. This is manifested by the observation of single-charge (SC) BTBT at 5.5 K in nanoscale Si Esaki diodes. Numerical analysis of nanoscale p+-n+ junctions with random dopant-atom distributions suggests that SC-BTBT is mediated by a potential dip created by a number of dopants “clustered” near each other, i.e., by a multiple-dopant cluster.

1.
2.
L.
Esaki
and
Y.
Miyahara
,
Solid State Electron.
1
(
1
),
13
(
1960
).
3.
A. G.
Chynoweth
,
R. A.
Logan
, and
D. E.
Thomas
,
Phys. Rev.
125
(
3
),
877
(
1962
).
4.
A. G.
Chynoweth
,
W. L.
Feldmann
, and
R. A.
Logan
,
Phys. Rev.
121
(
3
),
684
(
1961
).
5.
C. T.
Sah
,
Phys. Rev.
123
(
5
),
1594
(
1961
).
6.
L.
Esaki
,
Y.
Arakawa
, and
M.
Kitamura
,
Nature
464
(
7285
),
31
(
2010
).
7.
A.
Schenk
,
Solid State Electron.
36
(
1
),
19
(
1993
).
8.
H.
Schmid
,
C.
Bessire
,
M. T.
Björk
,
A.
Schenk
, and
H.
Riel
,
Nano Lett.
12
(
2
),
699
(
2012
).
9.
W. Y.
Fung
,
L.
Chen
, and
W.
Lu
,
Appl. Phys. Lett.
99
(
9
),
092108
(
2011
).
10.
A. M.
Ionescu
and
H.
Riel
,
Nature
479
,
329
(
2011
).
11.
M.
Tabe
,
H. N.
Tan
,
T.
Mizuno
,
M.
Muruganathan
,
L. T.
Anh
,
H.
Mizuta
,
R.
Nuryadi
, and
D.
Moraru
,
Appl. Phys. Lett.
108
(
9
),
093502
(
2016
).
12.
K. W.
Teng
and
S. S.
Li
,
Solid State Electron.
28
(
3
),
277
(
1985
).
13.
P. P.
Altermatt
,
A.
Schenk
, and
G.
Heiser
,
J. Appl. Phys.
100
(
11
),
113714
(
2006
).
14.
P. P.
Altermatt
,
A.
Schenk
,
B.
Schmithüsen
, and
G.
Heiser
,
J. Appl. Phys.
100
(
11
),
113715
(
2006
).
15.
B. I.
Shklovskii
and
A. L.
Éfros
,
Sov. J. Exp. Theor. Phys.
34
(
2
),
435
(
1972
).
16.
Single Charge Tunnelin
, edited by
H.
Grabert
and
M. H.
Devoret
(
NATO ASI Series, Plenum Press
,
New York
,
1991
).
17.
G. J.
Evans
,
H.
Mizuta
, and
H.
Ahmed
,
Jpn. J. Appl. Phys. Part 1
40
(
10
),
5837
(
2001
).
18.
B. I.
Shklovskii
and
A. L.
Éfros
,
Electronic Properties of Doped Semiconductors
(
Springer-Verlag
,
Berlin
,
1984
).
19.
B.
Weber
,
Y. H. M.
Tan
,
S.
Mahapatra
,
T. F.
Watson
,
H.
Ryu
,
R.
Rahman
,
L. C. L.
Hollenberg
,
G.
Klimeck
, and
M. Y.
Simmons
,
Nat. Nanotechnol.
9
(
6
),
430
(
2014
).
20.
M. F.
Gonzalez-Zalba
,
A. A.
Saraiva
,
M. J.
Calderón
,
D.
Heiss
,
B.
Koiller
, and
A. J.
Ferguson
,
Nano Lett.
14
(
10
),
5672
(
2014
).
21.
M. V.
Klymenko
,
S.
Rogge
, and
F.
Remacle
,
Phys. Rev. B
95
(
20
),
205301
(
2017
).
22.
A.
Samanta
,
M.
Muruganathan
,
M.
Hori
,
Y.
Ono
,
H.
Mizuta
,
M.
Tabe
, and
D.
Moraru
,
Appl. Phys. Lett.
110
(
9
),
093107
(
2017
).
23.
D.
Moraru
,
A.
Samanta
,
L. T.
Anh
,
T.
Mizuno
,
H.
Mizuta
, and
M.
Tabe
,
Sci. Rep.
4
,
6219
(
2014
).

Supplementary Material

You do not currently have access to this content.