Here, we report the fabrication of electrostatic fractional capacitors based on two-dimensional Ti3C2 MXene/vinylidene fluoride–trifluoroethylene–chlorofluoroethylene terpolymer [P(VDF-TrFE-CFE)] composites. The bandwidth of MXene-based fractional capacitors varies between 200 kHz and 2 MHz, while the phase angle varies less than ±2°. Additionally, the constant phase angle of the MXene/P(VDF-TrFE-CFE) can be precisely tuned from −67° to −34° by varying the volume ratio of MXene nanosheets in the polymer matrix. The results presented in this work demonstrate the potential of MXene/P(VDF-TrFE-CFE) composites as solid-state electrostatic fractional capacitors.

1.
A. M.
Elshurafa
,
M. N.
Almadhoun
,
K. N.
Salama
, and
H. N.
Alshareef
,
Appl. Phys. Lett.
102
,
232901
(
2013
).
2.
A.
Agambayev
,
S. P.
Patole
,
M.
Farhat
,
A.
Elwakil
,
H.
Bagci
, and
K. N.
Salama
,
ChemElectroChem
4
,
2807
2813
(
2017
).
3.
A.
Elwakil
,
IEEE Circuits Syst. Mag.
10
,
40
50
(
2010
).
4.
A. G.
Radwan
,
A. M.
Soliman
, and
A. S.
Elwakil
,
J. Circuits Syst. Comput.
17
,
55
66
(
2008
).
5.
A.
Adhikary
,
S.
Sen
, and
K.
Biswas
,
IEEE Trans. Circuits Syst. I
63
,
1142
1151
(
2016
).
6.
A. S.
Elwakil
,
A.
Agambayev
,
A.
Allagui
, and
K. N.
Salama
,
Chaos, Solitons Fractals
96
,
160
164
(
2017
).
7.
L.
Said
,
A. G.
Radwan
,
A. H.
Madian
, and
A. M.
Soliman
,
J. Circuits Syst. Comput.
26
,
1750160
(
2017
).
8.
H. J.
In
,
S.
Kumar
,
Y.
Shao-Horn
, and
G.
Barbastathis
,
Appl. Phys. Lett.
88
,
083104
(
2006
).
9.
A. N.
Morozovska
,
E. A.
Eliseev
, and
S. V.
Kalinin
,
Appl. Phys. Lett.
96
,
222906
(
2010
).
10.
T. J.
Freeborn
,
B.
Maundy
, and
A. S.
Elwakil
,
IEEE Trans. Emerg. Sel. Topics Power Electron.
3
,
367
376
(
2013
).
11.
L.
Hu
,
Y.
Ren
,
H.
Yang
, and
Q.
Xu
,
ACS Appl. Mater. Interfaces
6
,
14644
14652
(
2014
).
12.
B.
Put
,
P. M.
Vereecken
,
J.
Meersschaut
,
A.
Sepulveda
, and
A.
Stesmans
,
ACS Appl. Mater. Interfaces
8
,
7060
7069
(
2016
).
13.
A. S.
Elwakil
and
B.
Maundy
,
Electron. Lett.
46
,
1367
(
2010
).
14.
I.
Podlubny
,
I.
Petráš
,
B. M.
Vinagre
,
P.
O'Leary
, and
L'.
Dorčák
,
Nonlinear Dyn.
29
,
281
296
(
2002
).
15.
A. G.
Radwan
,
A.
Shamim
, and
K. N.
Salama
,
IEEE Microwave Wireless Compon. Lett.
21
,
120
122
(
2011
).
16.
A.
Shamim
,
A. G.
Radwan
, and
K. N.
Salama
, “
Fractional Smith chart theory
,”
IEEE Microwaves Wireless Compon. Lett.
21
,
117
119
(
2011
).
17.
A.
Soltan
,
A. G.
Radwan
, and
A. M.
Soliman
,
Microelectron. J.
43
,
818
827
(
2012
).
18.
A. G.
Radwan
and
K. N.
Salama
,
IEEE Trans. Circuits Syst. I
58
,
2388
2397
(
2011
).
19.
M. S.
Krishna
,
S.
Das
,
K.
Biswas
, and
B.
Goswami
,
IEEE Trans. Electron Devices
58
,
4067
4073
(
2011
).
20.
T. C.
Haba
,
G.
Ablart
,
T.
Camps
, and
F.
Olivie
,
Chaos, Solitons Fractals
24
,
479
490
(
2005
).
21.
S.
Roy
,
IEEE Trans. Circuit Theory
14
,
264
274
(
1967
).
22.
G.
Tsirimokou
,
C.
Psychalinos
,
A.
Elwakil
, and
K.
Salama
,
Electron. Lett.
52
,
1298
1300
(
2016
).
23.
G.
Tsirimokou
,
C.
Psychalinos
, and
A. S.
Elwakil
,
Analog Integr. Circuits Signal Process.
85
,
413
423
(
2015
).
24.
D. A.
John
,
S.
Banerjee
,
G. W.
Bohannan
, and
K.
Biswas
,
Appl. Phys. Lett.
110
,
163504
(
2017
).
25.
A.
Agambayev
,
K. H.
Rajab
,
A. H.
Hassan
,
M.
Farhat
,
H.
Bagci
, and
K. N.
Salama
,
J. Phys. D: Appl. Phys.
51
,
065602
(
2018
).
26.
T.
Kobayashi
,
N.
Hori
,
T.
Nakajima
, and
T.
Kawae
,
Appl. Phys. Lett.
108
,
132903
(
2016
).
27.
S. B.
Tu
,
Q.
Jiang
,
X. X.
Zhang
, and
H. N.
Alshareef
,
ACS Nano
12
,
3369
3377
(
2018
).
28.
M.
Naguib
,
O.
Mashtalir
,
J.
Carle
,
V.
Presser
,
J.
Lu
,
L.
Hultman
,
Y.
Gogotsi
, and
M. W.
Barsoum
,
ACS Nano
6
,
1322
1331
(
2012
).
29.
T.
Hu
,
J.
Wang
,
H.
Zhang
,
Z.
Li
,
M.
Hu
, and
X.
Wang
,
Phys. Chem. Chem. Phys.
17
,
9997
10003
(
2015
).
30.
G.
Zhang
,
D.
Brannum
,
D.
Dong
,
L.
Tang
,
E.
Allahyarov
,
S.
Tang
,
K.
Kodweis
,
J. K.
Lee
, and
L.
Zhu
,
Chem. Mater.
28
,
4646
4660
(
2016
).

Supplementary Material

You do not currently have access to this content.