Here, we report the fabrication of electrostatic fractional capacitors based on two-dimensional Ti3C2 MXene/vinylidene fluoride–trifluoroethylene–chlorofluoroethylene terpolymer [P(VDF-TrFE-CFE)] composites. The bandwidth of MXene-based fractional capacitors varies between 200 kHz and 2 MHz, while the phase angle varies less than ±2°. Additionally, the constant phase angle of the MXene/P(VDF-TrFE-CFE) can be precisely tuned from −67° to −34° by varying the volume ratio of MXene nanosheets in the polymer matrix. The results presented in this work demonstrate the potential of MXene/P(VDF-TrFE-CFE) composites as solid-state electrostatic fractional capacitors.
References
1.
A. M.
Elshurafa
, M. N.
Almadhoun
, K. N.
Salama
, and H. N.
Alshareef
, Appl. Phys. Lett.
102
, 232901
(2013
).2.
A.
Agambayev
, S. P.
Patole
, M.
Farhat
, A.
Elwakil
, H.
Bagci
, and K. N.
Salama
, ChemElectroChem
4
, 2807
–2813
(2017
).3.
A.
Elwakil
, IEEE Circuits Syst. Mag.
10
, 40
–50
(2010
).4.
A. G.
Radwan
, A. M.
Soliman
, and A. S.
Elwakil
, J. Circuits Syst. Comput.
17
, 55
–66
(2008
).5.
A.
Adhikary
, S.
Sen
, and K.
Biswas
, IEEE Trans. Circuits Syst. I
63
, 1142
–1151
(2016
).6.
A. S.
Elwakil
, A.
Agambayev
, A.
Allagui
, and K. N.
Salama
, Chaos, Solitons Fractals
96
, 160
–164
(2017
).7.
L.
Said
, A. G.
Radwan
, A. H.
Madian
, and A. M.
Soliman
, J. Circuits Syst. Comput.
26
, 1750160
(2017
).8.
H. J.
In
, S.
Kumar
, Y.
Shao-Horn
, and G.
Barbastathis
, Appl. Phys. Lett.
88
, 083104
(2006
).9.
A. N.
Morozovska
, E. A.
Eliseev
, and S. V.
Kalinin
, Appl. Phys. Lett.
96
, 222906
(2010
).10.
T. J.
Freeborn
, B.
Maundy
, and A. S.
Elwakil
, IEEE Trans. Emerg. Sel. Topics Power Electron.
3
, 367
–376
(2013
).11.
L.
Hu
, Y.
Ren
, H.
Yang
, and Q.
Xu
, ACS Appl. Mater. Interfaces
6
, 14644
–14652
(2014
).12.
B.
Put
, P. M.
Vereecken
, J.
Meersschaut
, A.
Sepulveda
, and A.
Stesmans
, ACS Appl. Mater. Interfaces
8
, 7060
–7069
(2016
).13.
A. S.
Elwakil
and B.
Maundy
, Electron. Lett.
46
, 1367
(2010
).14.
I.
Podlubny
, I.
Petráš
, B. M.
Vinagre
, P.
O'Leary
, and L'.
Dorčák
, Nonlinear Dyn.
29
, 281
–296
(2002
).15.
A. G.
Radwan
, A.
Shamim
, and K. N.
Salama
, IEEE Microwave Wireless Compon. Lett.
21
, 120
–122
(2011
).16.
A.
Shamim
, A. G.
Radwan
, and K. N.
Salama
, “Fractional Smith chart theory
,” IEEE Microwaves Wireless Compon. Lett.
21
, 117
–119
(2011
).17.
A.
Soltan
, A. G.
Radwan
, and A. M.
Soliman
, Microelectron. J.
43
, 818
–827
(2012
).18.
A. G.
Radwan
and K. N.
Salama
, IEEE Trans. Circuits Syst. I
58
, 2388
–2397
(2011
).19.
M. S.
Krishna
, S.
Das
, K.
Biswas
, and B.
Goswami
, IEEE Trans. Electron Devices
58
, 4067
–4073
(2011
).20.
T. C.
Haba
, G.
Ablart
, T.
Camps
, and F.
Olivie
, Chaos, Solitons Fractals
24
, 479
–490
(2005
).21.
S.
Roy
, IEEE Trans. Circuit Theory
14
, 264
–274
(1967
).22.
G.
Tsirimokou
, C.
Psychalinos
, A.
Elwakil
, and K.
Salama
, Electron. Lett.
52
, 1298
–1300
(2016
).23.
G.
Tsirimokou
, C.
Psychalinos
, and A. S.
Elwakil
, Analog Integr. Circuits Signal Process.
85
, 413
–423
(2015
).24.
D. A.
John
, S.
Banerjee
, G. W.
Bohannan
, and K.
Biswas
, Appl. Phys. Lett.
110
, 163504
(2017
).25.
A.
Agambayev
, K. H.
Rajab
, A. H.
Hassan
, M.
Farhat
, H.
Bagci
, and K. N.
Salama
, J. Phys. D: Appl. Phys.
51
, 065602
(2018
).26.
T.
Kobayashi
, N.
Hori
, T.
Nakajima
, and T.
Kawae
, Appl. Phys. Lett.
108
, 132903
(2016
).27.
S. B.
Tu
, Q.
Jiang
, X. X.
Zhang
, and H. N.
Alshareef
, ACS Nano
12
, 3369
−3377
(2018
).28.
M.
Naguib
, O.
Mashtalir
, J.
Carle
, V.
Presser
, J.
Lu
, L.
Hultman
, Y.
Gogotsi
, and M. W.
Barsoum
, ACS Nano
6
, 1322
−1331
(2012
).29.
T.
Hu
, J.
Wang
, H.
Zhang
, Z.
Li
, M.
Hu
, and X.
Wang
, Phys. Chem. Chem. Phys.
17
, 9997
–10003
(2015
).30.
G.
Zhang
, D.
Brannum
, D.
Dong
, L.
Tang
, E.
Allahyarov
, S.
Tang
, K.
Kodweis
, J. K.
Lee
, and L.
Zhu
, Chem. Mater.
28
, 4646
–4660
(2016
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.