The formation of the metastable orthorhombic phase (Pca21) in CeO2-HfO2 solid solution epitaxial thin films has been demonstrated. The films were deposited at room temperature on (001)yttria stabilized zirconia substrates by an Ar ion-beam sputtering method and subsequent annealing, where the Ce content of the films was controlled by changing the composition, x = [CeO2]/([HfO2]+[CeO2]), of the sputtering target. The chemical states of cations in xCeO2 − (1 − x)HfO2 (x =0–0.5) thin films have been investigated by X-ray photoelectron spectroscopy, which confirmed the coexistence of Ce4+ and Ce3+. The crystal structure has been investigated by using X-ray diffraction and transmission electron microscopy. These analyses revealed that the metastable orthorhombic phase was formed in the films with x =0.03–0.1, and the lattice constants of that phase increased with the Ce content. Microstructural analysis has been performed by using scanning transmission electron microscopy, which revealed a multidomain structure consisting of the orthorhombic phase. The polarization-electric field loop for the film with x =0.1 indicated ferroelectricity, demonstrating that CeO2-HfO2 solid solution thin films are candidates for fluorite-type ferroelectrics.

1.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K.
D. Kim
, and
C. S.
Hwang
,
Adv. Energy Mater.
4
,
1400610
(
2014
).
2.
M. H.
Park
,
H. J.
Kim
,
Y. J.
Kim
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
,
Nano Energy
12
,
131
(
2015
).
3.
M.
Pešić
,
C.
Künneth
,
M.
Hoffmann
,
H.
Mulaosmanovic
,
S.
Müller
,
E. T.
Breyer
,
U.
Schroeder
,
A.
Kersch
,
T.
Mikolajick
, and
S.
Slesazeck
,
J. Comput. Electron.
16
,
1236
(
2017
).
4.
J. H.
Lee
,
I.-H.
Yu
,
S. Y.
Lee
, and
C. S.
Hwang
,
J. Vac. Sci. Technol. B
32
,
03D109
(
2014
).
5.
X.
Sang
,
E. D.
Grimley
,
T.
Schenk
,
U.
Schroeder
, and
J. M.
LeBeau
,
Appl. Phys. Lett.
106
,
162905
(
2015
).
6.
H. J.
Kim
,
M. H.
Park
,
Y. J.
Kim
,
Y. H.
Lee
,
W.
Jeon
,
T.
Gwon
,
T.
Moon
,
K. D.
Kim
, and
C. S.
Hwang
,
Appl. Phys. Lett.
105
,
192903
(
2014
).
7.
M. H.
Park
,
Y. H.
Lee
,
H. J.
Kim
,
T.
Schenk
,
W.
Lee
,
K. D.
Kim
,
F. P. G.
Fengler
,
T.
Mikolajick
,
U.
Schroeder
, and
C. S.
Hwang
,
Nanoscale
9
,
9973
(
2017
).
8.
T.
Shiraishi
,
K.
Katayama
,
T.
Yokouchi
,
T.
Shimizu
,
T.
Oikawa
,
O.
Sakata
,
H.
Uchida
,
Y.
Imai
,
T.
Kiguchi
,
T. J.
Konno
, and
H.
Funakubo
,
Mater. Sci. Semicond. Process.
70
,
239
(
2017
).
9.
T.
Shiraishi
,
K.
Katayama
,
T.
Yokouchi
,
T.
Shimizu
,
T.
Oikawa
,
O.
Sakata
,
H.
Uchida
,
Y.
Imai
,
T.
Kiguchi
,
T. J.
Konno
, and
H.
Funakubo
,
Appl. Phys. Lett.
108
,
262904
(
2016
).
10.
T.
Onaya
,
T.
Nabatame
,
N.
Sawamoto
,
A.
Ohi
,
N.
Ikeda
,
T.
Chikyow
, and
A.
Ogura
,
Appl. Phys. Express
10
,
081501
(
2017
).
11.
T.
Li
,
N.
Zhang
,
Z.
Sun
,
C.
Xie
,
M.
Ye
,
S.
Mazumdar
,
L.
Shu
,
Y.
Wang
,
D.
Wang
,
L.
Chen
,
S.
Ke
, and
H.
Huang
,
J. Mater. Chem
C6
,
9224
(
2018
).
12.
S.
Shibayama
,
T.
Nishimura
,
S.
Migita
, and
A.
Toriumi
,
J. Appl. Phys.
124
,
184101
(
2018
).
13.
Y. H.
Lee
,
S. D.
Hyun
,
H. J.
Kim
,
J. S.
Kim
,
C.
Yoo
,
T.
Moon
,
K. D.
Kim
,
H. W.
Park
,
Y. B.
Lee
,
B. S.
Kim
,
J.
Roh
,
M. H.
Park
, and
C. S.
Hwang
,
Adv. Electron. Mater.
5
,
1800436
(
2019
).
14.
M. H.
Park
,
T.
Schenk
,
C. M.
Fancher
,
E. D.
Grimley
,
C.
Zhou
,
C.
Richter
,
J. M.
LeBeau
,
J. L.
Jones
,
T.
Mikolajick
, and
U.
Schroeder
,
J. Mater. Chem. C
5
,
4677
(
2017
).
15.
U.
Schroeder
,
C.
Richter
,
M. H.
Park
,
T.
Schenk
,
M.
Pešić
,
M.
Hoffmann
,
F. P. G.
Fengler
,
D.
Pohl
,
B.
Rellinghaus
,
C.
Zhou
,
C. C.
Chung
,
J. L.
Jones
, and
T.
Mikolajick
,
Inorg. Chem.
57
,
2752
(
2018
).
16.
T.
Shimizu
,
T.
Mimura
,
T.
Kiguchi
,
T.
Shiraishi
,
T.
Konno
,
Y.
Katsuya
,
O.
Sakata
, and
H.
Funakubo
,
App. Phys. Lett.
113
,
212901
(
2018
).
17.
T.
Shiraishi
,
S.
Choi
,
T.
Kiguchi
,
T.
Shimizu
,
H.
Uchida
,
H.
Funakubo
, and
T. J.
Konno
,
Jpn. J. Appl. Phys., Part 1
57
,
11UF02
(
2018
).
18.
T.
Kiguchi
,
S.
Nakamura
,
A.
Akama
,
T.
Shiraishi
, and
T. J.
Konno
,
J. Ceram. Soc. Jpn.
124
,
689
(
2016
).
19.
R. D.
Shannon
and
C. T.
Prewitt
,
ActaCrystallogr., Sect. B
26
,
1046
(
1970
).
20.
C.
Künneth
,
R.
Materlik
,
M.
Falkowski
, and
A.
Kersch
,
ACS Appl. Nano Mater.
1
,
254
(
2018
).
21.
R.
Materlik
,
C.
Künneth
, and
A.
Kersch
,
J. Appl. Phys.
117
,
134109
(
2015
).
22.
S.
Starschich
,
S.
Menzel
, and
U.
Bottger
,
Appl. Phys. Lett.
108
,
032903
(
2016
).
23.
X.
Hao
,
A.
Yoko
,
C.
Chen
,
K.
Inoue
,
M.
Saito
,
G.
Seong
,
S.
Takami
,
T.
Adschiri
, and
Y.
Ikuhara
,
Small
14
,
1802915
(
2018
).
24.
T.
Kiguchi
,
T.
Shiraishi
,
T.
Shimizu
,
H.
Funakubo
, and
T. J.
Konno
,
Jpn. J. Appl. Phys., Part 1
57
,
11UF16
(
2018
).
25.
A.
Chouprik
,
M.
Spiridonov
,
S.
Zarubin
,
R.
Kirtaev
,
V.
Mikheev
,
Y.
Lebedinskii
,
S.
Zakharchenko
, and
D.
Negrov
,
ACS Appl. Electron. Mater.
1
,
275
(
2019
).
26.
S.
Choi
,
T.
Shiraishi
,
T.
Kiguchi
,
T.
Shimizu
,
H.
Funakubo
, and
T. J.
Konnoet
,
Appl. Phys. Lett.
113
,
262903
(
2018
).
27.
H.
Naganuma
,
Y.
Inoue
, and
S.
Okamura
,
Jpn. J. Appl. Phys., Part 1
47
,
5558
(
2008
).
28.
J.
Müller
,
T. S.
Böscke
,
U.
Schröder
,
S.
Mueller
,
D.
Bräuhaus
,
U.
Böttger
,
L.
Frey
, and
T.
Mikolajick
,
Nano Lett.
12
,
4318
(
2012
).
29.
C. K.
Lee
,
E.
Cho
,
H. S.
Lee
,
C. S.
Hwang
, and
S.
Han
,
Phys. Rev. B
78
,
012102
(
2008
).

Supplementary Material

You do not currently have access to this content.