The behavior of gap states due to coordination defects (e.g., dangling bonds) and metal induced gap states (MIGS) is compared using density functional supercell calculations. While both types of gap states cause carrier recombination, they are passivated in different ways. Defects can be passivated by shifting their states out of the gap, whereas MIGS lie on normally coordinated atoms and their states cannot be shifted. Their “passivation” requires the insertion of an insulating layer to attenuate them sufficiently before they enter the semiconductor. We show that MIGS also cause Fermi level pinning, inhibiting the control of the work function by the contacts, and so they must also be attenuated to enable certain solar cell designs.

1.
J.
Melskens
,
B. W. H.
van de Loo
,
B.
Macco
,
L. E.
Black
,
S.
Smit
, and
W. M. M.
Kessels
,
IEEE J. Photovoltaics
8
,
373
(
2018
).
2.
C.
Battaglia
,
A.
Cuevas
, and
S.
De Wolf
,
Energy Environ. Sci.
9
,
1552
(
2015
).
3.
A.
Cuevas
,
Y.
Wan
,
D.
Yan
,
C.
Samundsett
,
T.
Allken
, and
X.
Zhang
,
Sol. Energy Mater. Sol. Cells
184
,
38
(
2018
).
4.
S.
Olibet
,
E.
Vallat-Sauvain
, and
C.
Ballif
,
Phys. Rev. B
87
,
035326
(
2007
).
5.
E.
Cartier
,
J. H.
Stathis
, and
D. A.
Buchanan
,
Appl. Phys. Lett.
63
,
1510
(
1993
).
6.
W. B.
Jackson
,
C. C.
Tsai
, and
S. M.
Kelso
,
J. Non-Cryst. Solids
77
,
281
(
1985
).
7.
J.
Tersoff
,
Phys. Rev. Lett.
52
,
465
(
1984
).
9.
J
Robertson
,
J. Vac. Sci. Technol., B
18
,
1785
(
2000
);
J
Robertson
,
J. Vac. Sci. Technol., A
31
,
050821
(
2013
).
10.
T.
Nishimura
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Express
1
,
051406
(
2008
).
11.
M.
Kobayashi
,
A.
Kinoshita
,
K.
Saraswat
,
H. S. P.
Wong
, and
Y.
Nishi
, in
Technical Digest VLSI
(IEEE,
2008
), p.
54
.
12.
A. W.
Cowley
and
S. M.
Sze
,
J. Appl. Phys.
36
,
3212
(
1965
).
13.
Y. C.
Yeo
,
T. J.
King
, and
C. M.
Hu
,
Appl. Phys. Lett.
81
,
2091
(
2002
).
14.
J.
Robertson
, in
Material Research Society Symposium,
November,
2017
.
15.
M.
Sajjad
,
X.
Yang
,
P.
Altermatt
,
N.
Singh
,
U.
Schwingenschlogl
, and
S.
DeWolf
,
Appl. Phys. Lett.
114
,
071601
(
2019
).
16.
J.
Bullock
,
D.
Yan
, and
A.
Cuevas
,
Phys. Status Solidi RRL
7
,
946
(
2013
).
17.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
18.
K. Y.
Tse
and
J.
Robertson
,
Phys. Rev. Lett.
99
,
086805
(
2007
).
19.
J.
Schmidt
,
R. R.
Peibst
, and
R.
Brendel
,
Sol. Energy Mater. Sol. Cells
187
,
39
(
2018
).
20.
J.
Bullock
,
M.
Hettick
,
J.
Geissbuhler
,
A. J.
Ong
,
T.
Allen
,
C. M.
Sutter-Fella
,
T.
Chen
,
H.
Ota
,
E. W.
Schalter
,
S.
DeWolf
,
C.
Ballif
,
A.
Cuevas
, and
A.
Javey
,
Nat. Energy
1
,
15031
(
2016
).
21.
Y.
Wan
,
C.
Samundsett
,
J.
Bullock
,
M.
Hettick
,
T.
Allen
,
D.
Yan
,
J.
Peng
,
Y.
Wu
,
J.
Cui
,
A.
Javey
, and
A.
Cuevas
,
Adv. Energy Mater.
7
,
1601863
(
2017
).
22.
S.
Braun
,
W. R.
Salaneck
, and
M.
Fahlmann
,
Adv. Mater.
21
,
1450
(
2009
).
23.
J.
Hwang
,
A.
Wan
, and
A.
Kahn
,
Mater. Sci. Eng. R
64
,
1
(
2009
).
24.
C.
Battaglia
,
S. M.
De Nicolas
,
S.
De Wolf
,
X.
Yin
,
M.
Zheng
,
C.
Baliff
, and
A.
Javey
,
Appl. Phys. Lett.
104
,
113902
(
2014
).
25.
Y.
Guo
and
J.
Robertson
,
Appl. Phys. Lett.
105
,
222110
(
2014
);
J.
Meyer
,
P. R.
Kidambi
,
B. C.
Beyer
,
C.
Weijtens
,
A.
Kuhn
,
A.
Centeno
,
J.
Robertson
, and
S.
Hofmann
,
Sci. Rep.
4
,
5380
(
2014
).
[PubMed]
26.
N.
Nakamura
,
J.
Kim
, and
H.
Hosono
,
Adv. Electron. Mater.
4
,
1700352
(
2018
).
27.
A.
Agrawal
,
N.
Shukla
,
K.
Ahmed
, and
S.
Datta
,
Appl. Phys. Lett.
101
,
042108
(
2012
).
28.
J.
Robertson
,
Appl. Phys. Lett.
94
,
152104
(
2009
).
29.
P. W.
Peacock
,
K.
Xiong
,
K.
Tse
, and
J.
Robertson
,
Phys. Rev. B
73
,
075328
(
2006
);
K. Y.
Tse
,
D.
Liu
, and
J.
Robertson
,
Phys. Rev. B
81
,
035325
(
2010
).
30.
S. J.
Clark
,
M. D.
Segall
,
C. J.
Pickard
,
P. J.
Hasnip
,
M. I. J.
Probert
,
K.
Refson
, and
M. C.
Payne
,
Z. Krist.
220
,
567
(
2005
).
You do not currently have access to this content.