We report observations of the effects of shock-induced chemical reactions that build to a steady detonation in an energetic material. The chemical reactions in certain materials initiate and build quickly, such that traditional characterization techniques for energetics cannot provide the spatial fidelity necessary to resolve the onset and build-up of reactions. In this work, physical vapor deposition was used to create films of an energetic material with precisely controlled thicknesses to investigate the growth to detonation resulting from shock-induced chemical reactions with microscale spatial resolution. Finite duration shocks were supplied from a well-defined electrically-driven flyer. The velocity of the transmitted shock was measured by photonic Doppler velocimetry with subnanosecond resolution. Initiation experiments were performed on deposited hexanitrostilbene samples ranging from 30 to 150 μm thickness to observe the emergent effects of chemical energy release. The resulting output interface velocity was observed to increase from that predicted for an unreacted shock to that of a chemically supported detonation within 100 μm. A build-up to detonation has not previously been quantified in such a short distance.

1.
T. R.
Gibbs
,
LASL Explosive Property Data
(
University of California Press
,
1980
), Vol.
4
.
2.
R.
Gustavsen
,
S.
Sheffield
, and
R.
Alcon
,
J. Appl. Phys.
99
,
114907
(
2006
).
3.
B.
Hayes
,
Rev. Sci. Instrum.
52
,
594
(
1981
).
4.
S. P.
Marsh
,
LASL Shock Hugoniot Data
(
University of California Press
,
1980
), Vol.
5
.
5.
H.
Vantine
,
J.
Chan
,
L.
Erickson
,
J.
Janzen
,
R.
Weingart
, and
R.
Lee
,
Rev. Sci. Instrum.
51
,
116
(
1980
).
6.
M.
Suceska
,
Test Methods for Explosives
(
Springer Science & Business Media
,
2012
).
7.
R. E.
Setchell
and
P. A.
Taylor
,
Prog. Astronaut. Aeronaut.
94
,
350
368
(
1984
).
8.
B.
Neyer
,
R.
Tomasoski
,
L.
Cox
, and
T.
Stoutenborough
, in
39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
(
2003
), p.
5138
.
9.
A. C.
Schwarz
, “
Study of factors which influence the shock-initiation sensitivity of hexanitrostilbene (HNS)
,”
Technical Report No. SANDBD-2372
(Sandia National Laboratories, Albuquerque, NM, USA,
1981
).
10.
R.
Knepper
,
R. R.
Wixom
,
M. P.
Marquez
, and
A. S.
Tappan
,
AIP Conf. Proc.
1793
,
030014
(
2017
).
11.
R.
Knepper
,
K.
Browning
,
R. R.
Wixom
,
A. S.
Tappan
,
M. A.
Rodriguez
, and
M. K.
Alam
,
Propellants, Explos., Pyrotech.
37
,
459
(
2012
).
12.
R.
Knepper
,
A. S.
Tappan
,
R. R.
Wixom
, and
M. A.
Rodriguez
,
J. Mater. Res.
26
,
1605
(
2011
).
13.
P. D.
Sargis
,
N. E.
Molau
,
D.
Sweider
,
M. E.
Lowry
, and
O. T.
Strand
, “
Photonic Doppler velocimetry
,”
Technical Report No. UCRL-ID-133075
(Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
1999
).
14.
B.
Jensen
,
D.
Holtkamp
,
P.
Rigg
, and
D.
Dolan
,
J. Appl. Phys.
101
,
013523
(
2007
).
15.
P.
Fenter
,
F.
Schreiber
,
L.
Zhou
,
P.
Eisenberger
, and
S.
Forrest
,
Phys. Rev. B
56
,
3046
(
1997
).
16.
F.
Schreiber
,
Phys. Status Solidi A
201
,
1037
(
2004
).
17.
G.
Witte
,
K.
Hänel
,
S.
Söhnchen
, and
C.
Wöll
,
Appl. Phys. A: Mater. Sci. Process.
82
,
447
(
2006
).
18.
D.
Zhong
,
M.
Hirtz
,
W.
Wang
,
R.
Dou
,
L.
Chi
, and
H.
Fuchs
,
Phys. Rev. B
77
,
113404
(
2008
).
19.
G.
Zhang
and
B. L.
Weeks
,
Appl. Surf. Sci.
256
,
2363
(
2010
).
20.
D. J.
Chapman
,
D. E.
Eakins
,
D. M.
Williamson
, and
W.
Proud
,
AIP Conf. Proc.
1426
,
442
445
(
2012
).
21.
J. C.
Russ
and
R. T.
Dehoff
,
Practical Stereology
(
Springer Science & Business Media
,
2012
).
22.
J. C.
Russ
and
F. B.
Neal
,
The Image Processing Handbook
(
Taylor & Francis
,
2017
).
23.
B. M.
Dobratz
, “
LLNL explosives handbook: Properties of chemical explosives and explosives and explosive simulants
,”
Technical Report No. UCRL-52997-Chg.2
(Lawrence Livermore National Laboratory, CA, USA,
1981
).
24.
O. T.
Strand
,
D.
Goosman
,
C.
Martinez
,
T.
Whitworth
, and
W.
Kuhlow
,
Rev. Sci. Instrum.
77
,
083108
(
2006
).
25.
D.
Dolan
,
Rev. Sci. Instrum.
81
,
053905
(
2010
).
26.
J.
McGlaun
,
S.
Thompson
,
L.
Kmetyk
, and
M.
Elrick
,
Sandia National Laboratories Report No. SAND89-0607
,
1989
.
27.
C. M.
May
and
C. M.
Tarver
,
AIP Conf. Proc.
1195
,
275
278
(
2009
).
28.
C. D.
Yarrington
,
R. R.
Wixom
, and
D. L.
Damm
,
J. Appl. Phys.
123
,
105901
(
2018
).
29.
W.
Herrmann
,
J. Appl. Phys.
40
,
2490
(
1969
).
30.
A. N.
Dremin
,
Toward Detonation Theory
(
Springer Science & Business Media
,
1999
).
31.
L.
Fried
and
P.
Souers
, “
Cheetah: A next generation thermochemical code
,”
Technical Report No. UCRL-ID-117240
(Lawrence Livermore National Laboratory, CA, USA,
1994
).
32.
E.
Lee
,
H.
Hornig
, and
J.
Kury
, “
Adiabatic expansion of high explosive detonation products
,”
Technical Report No. UCRL-50422
(University of California Radiation Laboratory at Livermore, Livermore, CA, USA,
1968
).
33.
J. O.
Erkman
and
D. J.
Edwards
, “
Computed and experimental Hugoniots for unreacted porous high explosives
,”
Technical Report No. NOLTR 74-213
(Naval Ordnance Laboratory, White Oak, MD,
1974
).
34.
R. L.
Gustavsen
,
S. A.
Sheffield
, and
R.
Alcon
,
AIP Conf. Proc.
429
,
739
742
(
1998
).
35.
R.
Knepper
,
M.
Marquez
, and
A.
Tappan
, in
Proceedings of the 16th International Symposium on Detonation
,
Cambridge, MD
,
2018
.
You do not currently have access to this content.