The performance of a vibration energy harvester consisting of a beam with a water-filled container as the tip mass is investigated. Particular attention is paid to the capability of this system to harvest energy over a broader range of frequencies compared to the traditional beam with a solid tip mass system. The broadening is due to geometric, inertial, damping, flow nonlinearities, or a combination of them. These nonlinearities cause energy exchange between the system's modes through internal resonances leading to nonlinear periodic, or periodically or chaotically modulated responses over a relatively broad range of excitation frequencies. The results show an output voltage response that has two or more resonance peaks in comparison to the traditional harvester, which has only one peak near the resonance frequency. The system's parameters including the excitation frequency and amplitude and the water depth to container diameter ratio can be used to control the frequency bandwidth over which energy is harvested.

1.
C.
Williams
and
R. B.
Yates
, “
Analysis of a micro-electric generator for microsystems
,”
Sens. Actuators A: Phys.
52
,
8
11
(
1996
).
2.
S.
Beeby
,
M.
Tudor
, and
N.
White
, “
Energy harvesting vibration sources for microsystems applications
,”
Meas. Sci. Technol.
17
,
R175
(
2006
).
3.
N. G.
Stephen
, “
On energy harvesting from ambient vibration
,”
J. Sound Vib.
293
,
409
425
(
2006
).
4.
M. Y.
Zakaria
,
M. Y.
Al-Haik
, and
M. R.
Hajj
, “
Experimental analysis of energy harvesting from self-induced flutter of a composite beam
,”
Appl. Phys. Lett.
107
,
023901
(
2015
).
5.
A.
Erturk
and
D. J.
Inman
, “
A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters
,”
J. Vib. Acoust.
130
,
041002
(
2008
).
6.
A.
Erturk
and
D. J.
Inman
, “
On mechanical modeling of cantilevered piezoelectric vibration energy harvesters
,”
J. Intell. Mater. Syst. Struct.
19
,
1311
1325
(
2008
).
7.
E. S.
Leland
and
P. K.
Wright
, “
Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload
,”
Smart Mater. Struct.
15
,
1413
(
2006
).
8.
S.-M.
Jung
and
K.-S.
Yun
, “
Energy-harvesting device with mechanical frequency-up conversion mechanism for increased power efficiency and wideband operation
,”
Appl. Phys. Lett.
96
,
111906
(
2010
).
9.
S.
Shahruz
, “
Design of mechanical band-pass filters with large frequency bands for energy scavenging
,”
Mechatronics
16
,
523
531
(
2006
).
10.
S.
Dong
,
J.
Zhai
,
J.
Li
,
D.
Viehland
, and
S.
Priya
, “
Multimodal system for harvesting magnetic and mechanical energy
,”
Appl. Phys. Lett.
93
,
103511
(
2008
).
11.
F.
Cottone
,
H.
Vocca
, and
L.
Gammaitoni
, “
Nonlinear energy harvesting
,”
Phys. Rev. Lett.
102
,
080601
(
2009
).
12.
B.
Yang
,
J.
Liu
,
G.
Tang
,
J.
Luo
,
C.
Yang
, and
Y.
Li
, “
A generator with nonlinear spring oscillator to provide vibrations of multi-frequency
,”
Appl. Phys. Lett.
99
,
223505
(
2011
).
13.
N.
Sharpes
,
A.
Abdelkefi
,
M.
Hajj
,
J.
Heo
,
K.-H.
Cho
, and
S.
Priya
, “
Preloaded freeplay wide-bandwidth low-frequency piezoelectric harvesters
,”
Appl. Phys. Lett.
107
,
023902
(
2015
).
14.
A.
Erturk
,
J. M.
Renno
, and
D. J.
Inman
, “
Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVS
,”
J. Intell. Mater. Syst. Struct.
20
,
529
544
(
2009
).
15.
J. W.
Xu
,
W. W.
Shao
,
F. R.
Kong
, and
Z. H.
Feng
, “
Right-angle piezoelectric cantilever with improved energy harvesting efficiency
,”
Appl. Phys. Lett.
96
,
152904
(
2010
).
16.
H.
Liu
,
C.
Lee
,
T.
Kobayashi
,
C. J.
Tay
, and
C.
Quan
, “
A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz
,”
Microsyst. Technol.
18
,
497
506
(
2012
).
17.
I.
Mehdipour
,
F.
Braghin
,
N.
Lecis
, and
C.
Galassi
, “
Analytical modeling and experimental verification of a S-shaped vibration energy harvester
,” in
ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
(American Society of Mechanical Engineers,
2016
), p.
V002T07A006
.
18.
A. R. M.
Siddique
,
S.
Mahmud
, and
B.
Van Heyst
, “
Energy conversion by ‘t-shaped’ cantilever type electromagnetic vibration based micro power generator from low frequency vibration sources
,”
Energy Convers. Manage.
133
,
399
410
(
2017
).
19.
M.
Wu
,
Y.
Ou
,
H.
Mao
,
Z.
Li
,
R.
Liu
,
A.
Ming
, and
W.
Ou
, “
Multi-resonant wideband energy harvester based on a folded asymmetric M-shaped cantilever
,”
AIP Adv.
5
,
077149
(
2015
).
20.
K. M.
Tsuruta
,
D. A.
Rade
,
R. M. F.
Neto
, and
A. A.
Cavalini
, Jr.
, “
Experimental evaluation of a cruciform piezoelectric energy harvester
,”
Mech. Syst. Signal Process.
79
,
141
148
(
2016
).
21.
N.
Jackson
,
F.
Stam
,
O. Z.
Olszewski
,
H.
Doyle
,
A.
Quinn
, and
A.
Mathewson
, “
Widening the bandwidth of vibration energy harvesters using a liquid-based non-uniform load distribution
,”
Sens. Actuators A: Phys.
246
,
170
179
(
2016
).
22.
A.
Bibo
,
R.
Masana
,
A.
King
,
G.
Li
, and
M.
Daqaq
, “
Electromagnetic ferrofluid-based energy harvester
,”
Phys. Lett. A
376
,
2163
2166
(
2012
).
23.
S.
Alazmi
,
Y.
Xu
, and
M.
Daqaq
, “
Harvesting energy from the sloshing motion of ferrofluids in an externally excited container: Analytical modeling and experimental validation
,”
Phys. Fluids
28
,
077101
(
2016
).
24.
Q.
Liu
,
S. F.
Alazemi
,
M. F.
Daqaq
, and
G.
Li
, “
A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation
,”
J. Magn. Magn. Mater.
449
,
105
118
(
2018
).
25.
R. E.
Hutton
, “
An investigation of resonant, nonlinear, nonplanar free surface oscillations of a fluid
,” NASA Technical Note D-1870 (Washington, 1963).
26.
R.
Ibrahim
and
A.
Barr
, “
Autoparametric resonance in a structure containing a liquid, part I: Two mode interaction
,”
J. Sound Vib.
42
,
159
179
(
1975
).
27.
R.
Ibrahim
and
A.
Barr
, “
Autoparametric resonance in a structure containing a liquid, part II: Three mode interaction
,”
J. Sound Vib.
42
,
181
200
(
1975
).
28.
T.
Ikeda
, “
Nonlinear parametric vibrations of an elastic structure with a rectangular liquid tank
,”
Nonlinear Dyn.
33
,
43
70
(
2003
).

Supplementary Material

You do not currently have access to this content.