Low-temperature formation of Ge thin-film transistors (TFTs) on insulators has been widely investigated to improve the performance of Si large-scale integrated circuits and mobile terminals. Here, we studied the relationship between the electrical properties of polycrystalline Ge and its TFT performance using high-mobility Ge formed on glass using our recently developed solid-phase crystallization technique. The field-effect mobility μFE and on/off currents of the accumulation-mode TFTs directly reflected the Hall hole mobility μHall, hole concentration, and film thickness of Ge. By thinning the 100-nm thick Ge layer with a large grain size (3.7 μm), we achieved a high μHall (190 cm2/Vs) in a 55-nm thick film that was almost thin enough to fully deplete the channel. The TFT using this Ge layer exhibited both high μFE (170 cm2/Vs) and on/off current ratios (∼102). This is the highest μFE among low-temperature (<500 °C) polycrystalline Ge TFTs without minimizing the channel region (<1 μm).

1.
A.
Nayfeh
,
C. O.
Chui
,
T.
Yonehara
, and
K. C.
Saraswat
,
IEEE Electron Device Lett.
26
,
311
(
2005
).
2.
D. P.
Brunco
,
B.
De Jaeger
,
G.
Eneman
,
J.
Mitard
,
G.
Hellings
,
A.
Satta
,
V.
Terzieva
,
L.
Souriau
,
F. E.
Leys
,
G.
Pourtois
,
M.
Houssa
,
G.
Winderickx
,
E.
Vrancken
,
S.
Sioncke
,
K.
Opsomer
,
G.
Nicholas
,
M.
Caymax
,
A.
Stesmans
,
J.
Van Steenbergen
,
P. W.
Mertens
,
M.
Meuris
, and
M. M.
Heyns
,
J. Electrochem. Soc.
155
,
H552
(
2008
).
4.
K.
Yamamoto
,
T.
Sada
,
D.
Wang
, and
H.
Nakashima
,
Appl. Phys. Lett.
103
,
122106
(
2013
).
5.
S.
Takagi
,
R.
Zhang
,
J.
Suh
,
S.-H.
Kim
,
M.
Yokoyama
,
K.
Nishi
, and
M.
Takenaka
,
Jpn. J. Appl. Phys. Part 1
54
,
06FA01
(
2015
).
6.
A.
Toriumi
and
T.
Nishimura
,
Jpn. J. Appl. Phys. Part 1
57
,
010101
(
2018
).
7.
G.
Taraschi
,
A. J.
Pitera
, and
E. A.
Fitzgerald
,
Solid-State Electron.
48
,
1297
(
2004
).
8.
Y.
Moriyama
,
K.
Ikeda
,
Y.
Kamimuta
,
M.
Oda
,
T.
Irisawa
,
Y.
Nakamura
,
A.
Sakai
, and
T.
Tezuka
,
Solid-State Electron.
83
,
42
(
2013
).
9.
K.
Yu
,
F.
Yang
,
H.
Cong
,
L.
Zhou
,
Q.
Liu
,
L.
Zhang
,
B.
Cheng
,
C.
Xue
,
Y.
Zuo
, and
C.
Li
,
J. Alloys Compd.
750
,
182
(
2018
).
10.
T.
Maeda
,
K.
Ikeda
,
S.
Nakaharai
,
T.
Tezuka
,
N.
Sugiyama
,
Y.
Moriyama
, and
S.
Takagi
,
Thin Solid Films
508
,
346
(
2006
).
11.
J.
Feng
,
G.
Thareja
,
M.
Kobayashi
,
S.
Chen
,
A.
Poon
,
Y.
Bai
,
P. B.
Griffin
,
S. S.
Wong
,
Y.
Nishi
, and
J. D.
Plummer
,
IEEE Electron Device Lett.
29
,
805
(
2008
).
12.
S.
Hu
,
P. W.
Leu
,
A. F.
Marshall
, and
P. C.
McIntyre
,
Nat. Nanotechnol.
4
,
649
(
2009
).
13.
K.
Toko
,
Y.
Ohta
,
T.
Tanaka
,
T.
Sadoh
, and
M.
Miyao
,
Appl. Phys. Lett.
99
,
032103
(
2011
).
14.
T.
Hosoi
,
Y.
Suzuki
,
T.
Shimura
, and
H.
Watanabe
,
Appl. Phys. Lett.
105
,
173502
(
2014
).
15.
K.
Usuda
,
Y.
Kamata
,
Y.
Kamimuta
,
T.
Mori
,
M.
Koike
, and
T.
Tezuka
,
Appl. Phys. Express
7
,
056501
(
2014
).
16.
Y.
Kamata
,
M.
Koike
,
E.
Kurosawa
,
M.
Kurosawa
,
H.
Ota
,
O.
Nakatsuka
,
S.
Zaima
, and
T.
Tezuka
,
Appl. Phys. Express
7
,
121302
(
2014
).
17.
T.
Sadoh
,
H.
Kamizuru
,
A.
Kenjo
, and
M.
Miyao
,
Appl. Phys. Lett.
89
,
192114
(
2006
).
18.
K.
Toko
,
I.
Nakao
,
T.
Sadoh
,
T.
Noguchi
, and
M.
Miyao
,
Solid-State Electron.
53
,
1159
(
2009
).
19.
A.
Hara
,
Y.
Nishimura
, and
H.
Ohsawa
,
Jpn. J. Appl. Phys. Part 1
56
,
03BB01
(
2017
).
20.
S.
Kabuyanagi
,
T.
Nishimura
,
K.
Nagashio
, and
A.
Toriumi
,
Thin Solid Films
557
,
334
(
2014
).
21.
H. A.
Kasirajan
,
W.-H.
Huang
,
M.-H.
Kao
,
H.-H.
Wang
,
J.-M.
Shieh
,
F.-M.
Pan
, and
C.-H.
Shen
,
Appl. Phys. Express
11
,
101305
(
2018
).
22.
M.
Asadirad
,
Y.
Gao
,
P.
Dutta
,
S.
Shervin
,
S.
Sun
,
S.
Ravipati
,
S. H.
Kim
,
Y.
Yao
,
K. H.
Lee
,
A. P.
Litvinchuk
,
V.
Selvamanickam
, and
J.-H.
Ryou
,
Adv. Electron. Mater.
2
,
1600041
(
2016
).
23.
B.
Hekmatshoar
,
S.
Mohajerzadeh
,
D.
Shahrjerdi
, and
M. D.
Robertson
,
Appl. Phys. Lett.
85
,
1054
(
2004
).
24.
K.
Toko
,
R.
Numata
,
N.
Oya
,
N.
Fukata
,
N.
Usami
, and
T.
Suemasu
,
Appl. Phys. Lett.
104
,
22106
(
2014
).
25.
K.
Kasahara
,
Y.
Nagatomi
,
K.
Yamamoto
,
H.
Higashi
,
M.
Nakano
,
S.
Yamada
,
D.
Wang
,
H.
Nakashima
, and
K.
Hamaya
,
Appl. Phys. Lett.
107
,
142102
(
2015
).
26.
T.
Suzuki
,
B. M.
Joseph
,
M.
Fukai
,
M.
Kamiko
, and
K.
Kyuno
,
Appl. Phys. Express
10
,
095502
(
2017
).
27.
H.
Higashi
,
K.
Kudo
,
K.
Yamamoto
,
S.
Yamada
,
T.
Kanashima
,
I.
Tsunoda
,
H.
Nakashima
, and
K.
Hamaya
,
J. Appl. Phys.
123
,
215704
(
2018
).
28.
H.
Haesslein
,
R.
Sielemann
, and
C.
Zistl
,
Phys. Rev. Lett.
80
,
2626
(
1998
).
29.
K.
Toko
,
R.
Yoshimine
,
K.
Moto
, and
T.
Suemasu
,
Sci. Rep.
7
,
16981
(
2017
).
30.
R.
Yoshimine
,
K.
Moto
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Express
11
,
031302
(
2018
).
31.
T.
Imajo
,
K.
Moto
,
R.
Yoshimine
,
T.
Suemasu
, and
K.
Toko
,
Appl. Phys. Express
12
,
015508
(
2019
).
32.
Y.
Kimura
,
M.
Kishi
, and
T.
Katoda
,
J. Appl. Phys.
86
,
2278
(
1999
).
33.
A.
Dimoulas
,
A.
Toriumi
, and
S. E.
Mohney
,
MRS Bull.
34
,
522
(
2009
).
34.
A. W.
Wang
and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
47
,
1035
(
2000
).
You do not currently have access to this content.