Early work on carbon nanotube (CNT) antennas indicated that their performance could not match that of metals such as copper. However, recent improvements in fluid phase CNT processing have yielded macroscopic CNT materials with better alignment and conductivity. There is currently a gap in the literature on CNT antennas for direct experimental measurements of radiation efficiency. In this study, we conducted radiation efficiency measurements of microstrip patch antennas made of shear-aligned CNT films. We measured a radiation efficiency of 94% at 10 GHz and 14 GHz, matching equivalent copper antennas. Furthermore, the minimum CNT film thickness required to match the performance of copper drops with increasing frequency due to reduced losses from the skin effect. These findings pave the way for applications of aligned CNT patch antennas in the aerospace industry, where low weight, mechanical durability, and temperature-independent performance are critically important.

1.
H.
Rmili
,
J.-L.
Miane
,
H.
Zangar
, and
T.
Olinga
, “
Design of microstrip-fed proximity-coupled conducting-polymer patch antenna
,”
Microwaves Opt. Technol. Lett.
48
(
4
),
655
660
(
2006
).
2.
A.
Verma
,
B.
Weng
,
R.
Shepherd
,
C.
Fumeaux
,
V.-T.
Truong
,
G. G.
Wallace
, and
B. D.
Bates
, “
6 GHz microstrip patch antennas with PEDOT and polypyrrole conducting polymers
,” in
2010 International Conference on Electromagnetics in Advanced Applications (ICEAA)
(
2010
), pp.
329
332
.
3.
S. J.
Chen
,
T.
Kaufmann
,
R.
Shepherd
,
B.
Chivers
,
B.
Weng
,
A.
Vassallo
,
A.
Minett
, and
C.
Fumeaux
, “
A compact, highly efficient and flexible polymer ultra-wideband antenna
,”
IEEE Antennas Wireless Propag. Lett.
14
,
1207
1210
(
2015
).
4.
A.
Galehdar
,
P. J.
Callus
, and
K.
Ghorbani
, “
A novel method of conductivity measurements for carbon-fiber monopole antenna
,”
IEEE Trans. Antennas Propag.
59
(
6
),
2120
2126
(
2011
).
5.
A.
Mehdipour
,
A. R.
Sebak
,
C. W.
Trueman
,
I. D.
Rosca
, and
S. V.
Hoa
, “
Conductive carbon fiber composite materials for antenna and microwave applications
,” in
2012 29th National Radio Science Conference (NRSC)
(
2012
), pp.
1
8
.
6.
M. M.
Mansor
,
S. K. A.
Rahim
, and
U.
Hashim
, “
A 2.45 GHz wearable antenna using conductive graphene and polymer substrate
,” in
2014 International Symposium on Technology Management and Emerging Technologies (ISTMET)
(
2014
), pp.
29
32
.
7.
A.
Mehdipour
,
I. D.
Rosca
,
A.-R.
Sebak
,
C. W.
Trueman
, and
S. V.
Hoa
, “
Carbon nanotube composites for wideband millimeter-wave antenna applications
,”
IEEE Trans. Antennas Propag.
59
(
10
),
3572
3578
(
2011
).
8.
T. A.
Elwi
,
H. M.
Al-Rizzo
,
D. G.
Rucker
,
E.
Dervishi
,
Z.
Li
, and
A. S.
Biris
, “
Multi-walled carbon nanotube-based RF antennas
,”
Nanotechnology
21
(
4
),
045301
(
2010
).
9.
S. D.
Keller
,
A. I.
Zaghloul
,
V.
Shanov
,
M. J.
Schulz
,
D. B.
Mast
, and
N. T.
Alvarez
, “
Radiation performance of polarization selective carbon nanotube sheet patch antennas
,”
IEEE Trans. Antennas Propag.
62
(
1
),
48
55
(
2014
).
10.
I.
Puchades
,
J. E.
Rossi
,
C. D.
Cress
,
E.
Naglich
, and
B. J.
Landi
, “
Carbon nanotube thin-film antennas
,”
ACS Appl. Mater. Interfaces
8
(
32
),
20986
20992
(
2016
).
11.
S. D.
Keller
,
A. I.
Zaghloul
,
V.
Shanov
,
M. J.
Schulz
,
D. B.
Mast
, and
N. T.
Alvarez
, “
Electromagnetic simulation and measurement of carbon nanotube thread dipole antennas
,”
IEEE Trans. Nanotechnol.
13
(
2
),
394
403
(
2014
).
12.
E. A.
Bengio
,
D.
Senic
,
L. W.
Taylor
,
D. E.
Tsentalovich
,
P.
Chen
,
C. L.
Holloway
,
A.
Babakhani
,
C. J.
Long
,
D. R.
Novotny
,
J. C.
Booth
 et al, “
High efficiency carbon nanotube thread antennas
,”
Appl. Phys. Lett.
111
(
16
),
163109
(
2017
).
13.
A.
Baca
,
P.
Dabnichki
,
M.
Heller
, and
P.
Kornfeind
, “
Ubiquitous computing in sports: A review and analysis
,”
J. Sports Sci.
27
(
12
),
1335
1346
(
2009
).
14.
L.
Atzori
,
A.
Iera
, and
G.
Morabito
, “
The internet of things: A survey
,”
Comput. Networks
54
(
15
),
2787
2805
(
2010
).
15.
M.
Arsalan
,
A.
Talha
, and
N.-M.
Mohammed
, “
Review of downhole wireless communication techniques
,” paper presented at the
Abu Dhabi International Petroleum Exhibition and Conference
,
2014
.
16.
F.
Roberts
,
NASA Looks to Bring IoT to Space with Wireless Comms Test
(
Internet of Business
,
2017
).
17.
H.
Mopidevi
,
Y.
Damgaci
,
D.
Rodrigo
,
L.
Jofre
, and
B. A.
Cetiner
, “
A quad-band antenna for public safety applications
,”
IEEE Antennas Wireless Propag. Lett.
13
,
1231
1234
(
2014
).
18.
F. G.
Costa
,
J.
Ueyama
,
T.
Braun
,
G.
Pessin
,
F. S.
Osório
, and
P. A.
Vargas
, “
The use of unmanned aerial vehicles and wireless sensor network in agricultural applications
,” in
2012 IEEE International on Geoscience and Remote Sensing Symposium (IGARSS)
(
2012
), pp.
5045
5048
.
19.
M.
Dresselhaus
,
G.
Dresselhaus
, and
P.
Eklund
,
Science of Fullerenes and Carbon Nanotubes
(
Academic Press
,
1995
).
20.
P. J.
Burke
,
S.
Li
, and
Z.
Yu
, “
Quantitative theory of nanowire and nanotube antenna performance
,”
IEEE Trans. Nanotechnol.
5
(
4
),
314
334
(
2006
).
21.
J. J.
Plombon
,
K. P.
O'Brien
,
F.
Gstrein
,
V. M.
Dubin
, and
Y.
Jiao
, “
High-frequency electrical properties of individual and bundled carbon nanotubes
,”
Appl. Phys. Lett.
90
(
6
),
063106
(
2007
).
22.
S. D.
Keller
,
A. I.
Zaghloul
,
V.
Shanov
,
M. J.
Schulz
, and
D. B.
Mast
, “
Design considerations for a meshed carbon nanotube thread patch antenna
,”
IEEE Antennas Wireless Propag. Lett.
12
,
1192
1195
(
2013
).
23.
S. D.
Keller
and
A. I.
Zaghloul
, “
Multifunctional meshed carbon nanotube thread patch antenna
,” in
Sensors, 2011 IEEE
(
2011
), pp.
631
634
.
24.
N.
Behabtu
,
C. C.
Young
,
D. E.
Tsentalovich
,
O.
Kleinerman
,
X.
Wang
,
A. W. K.
Ma
,
E. A.
Bengio
,
R. F.
ter Waarbeek
,
J. J.
de Jong
,
R. E.
Hoogerwerf
 et al, “
Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity
,”
Science
339
(
6116
),
182
186
(
2013
).
25.
C. L.
Holloway
,
H. A.
Shah
,
R. J.
Pirkl
,
W. F.
Young
,
D. A.
Hill
, and
J.
Ladbury
, “
Reverberation chamber techniques for determining the radiation and total efficiency of antennas
,”
IEEE Trans. Antennas Propag.
60
(
4
),
1758
1770
(
2012
).
26.
D.
Senic
,
D. F.
Williams
,
K. A.
Remley
,
C.-M.
Wang
,
C. L.
Holloway
,
Z.
Yang
, and
K. F.
Warnick
, “
Improved antenna efficiency measurement uncertainty in a reverberation chamber at millimeter-wave frequencies
,”
IEEE Trans. Antennas Propag.
65
(
8
),
4209
4219
(
2017
).
27.
J.
Volakis
,
J.
Richard
, and
J.
Henry
,
Antenna Engineering Handbook
, 4th ed. (
McGraw-Hill
,
2007
).
28.
M.
Haghzadeh
,
C.
Armiento
, and
A.
Akyurtlu
, “
Microwave dielectric characterization of flexible plastic films using printed electronics
,” in
2016 87th ARFTG Microwave Measurement Conference (ARFTG)
(
2016
), pp.
1
4
.
29.
S.
Gbordzoe
,
S.
Yarmolenko
,
S.
Kanakaraj
,
M. R.
Haase
,
N. T.
Alvarez
,
R.
Borgemenke
,
P. K.
Adusei
, and
V.
Shanov
, “
Effects of laser cutting on the structural and mechanical properties of carbon nanotube assemblages
,”
Mater. Sci. Eng. B
223
,
143
152
(
2017
).
30.
J. C.
Booth
,
D. H.
Wu
, and
S. M.
Anlage
, “
A broadband method for the measurement of the surface impedance of thin films at microwave frequencies
,”
Rev. Sci. Instrum.
65
(
6
),
2082
2090
(
1994
).
31.
R. C.
Che
,
L.-M.
Peng
,
X. F.
Duan
,
Q.
Chen
, and
X. L.
Liang
, “
Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes
,”
Adv. Mater.
16
(
5
),
401
405
(
2004
).
32.
C.
Moosbrugger
and
F.
Cverna
,
Electrical and Magnetic Properties of Metals Data Book
(
ASM International
,
2000
).
33.
F.
Mirri
,
A. W. K.
Ma
,
T. T.
Hsu
,
N.
Behabtu
,
S. L.
Eichmann
,
C. C.
Young
,
D. E.
Tsentalovich
, and
M.
Pasquali
, “
High-performance carbon nanotube transparent conductive films by scalable dip coating
,”
ACS Nano
6
(
11
),
9737
9744
(
2012
).
34.
R. J.
Headrick
,
D. E.
Tsentalovich
,
J.
Berdegue
,
E. A.
Bengio
,
L.
Liberman
,
O.
Kleinerman
,
M. S.
Lucas
,
Y.
Talmon
, and
M.
Pasquali
, “
Structure-property relations in carbon nanotube fibers by downscaling solution processing
,”
Adv. Mater.
30
(
9
),
1704482
(
2018
).
35.
D.
Senic
,
K. A.
Remley
,
C.-M. J.
Wang
,
D. F.
Williams
,
C. L.
Holloway
,
D. C.
Ribeiro
, and
A. T.
Kirk
, “
Estimating and reducing uncertainty in reverberation-chamber characterization at millimeter-wave frequencies
,”
IEEE Trans. Antennas Propag.
64
(
7
),
3130
3140
(
2016
).

Supplementary Material

You do not currently have access to this content.