A laser-driven semiconductor switch (LDSS) employing silicon (Si) and gallium arsenide (GaAs) wafers has been used to produce nanosecond-scale pulses from a 3 μs, 110 GHz gyrotron at the megawatt power level. Photoconductivity was induced in the wafers using a 532 nm laser, which produced 6 ns, 230 mJ pulses. Irradiation of a single Si wafer by the laser produced 110 GHz RF pulses with a 9 ns width and >70% reflectance. Under the same conditions, a single GaAs wafer yielded 24 ns 110 GHz RF pulses with >78% reflectance. For both semiconductor materials, a higher value of reflectance was observed with increasing 110 GHz beam intensity. Using two active wafers, pulses of variable length down to 3 ns duration were created. The switch was tested at incident 110 GHz RF power levels up to 600 kW. A 1-D model is presented that agrees well with the experimentally observed temporal pulse shapes obtained with a single Si wafer. The LDSS has many potential uses in high power millimeter-wave research, including testing of high-gradient accelerator structures.

1.
M.
Rahm
,
J.
Li
, and
W. J.
Padilla
,
J. Infrared, Millimeter, Terahertz Waves
34
,
1
(
2013
).
2.
A.
Woldegeorgis
,
T.
Kurihara
,
B.
Beleites
,
J.
Bossert
,
R.
Grosse
,
G. G.
Paulus
,
F.
Ronneberger
, and
A.
Gopal
,
J. Infrared, Millimeter, Terahertz Waves
39
,
667
(
2018
).
3.
T.
Nozokido
,
H.
Minamide
, and
K.
Mizuno
,
Electron. Commun. Jpn.
80
,
1
(
1997
).
4.
M. L.
Kulygin
,
V. I.
Belousov
,
G. G.
Denisov
,
A. A.
Vikharev
,
V. V.
Korchagin
,
A. V.
Kuzin
,
E. A.
Novikov
, and
M. A.
Khozin
,
Radiophys. Quantum Electron.
57
,
509
(
2014
).
5.
S.
Mitsudo
,
C.
Umegaki
,
Y.
Fujii
, and
Y.
Tatematsu
, in
Proceedings of the IEEE 40th International Conference on Infrared Millimeter, Terahertz Waves, Hong Kong, China
(
2015
), p.
1
.
6.
M. S.
Choe
,
A.
Sawant
,
K.-S.
Lee
,
N. E.
Yu
, and
E.
Choi
,
Appl. Phys. Lett.
110
,
074101
(
2017
).
7.
D. H.
Auston
,
Appl. Phys. Lett.
26
,
101
(
1975
).
8.
G.
Mourou
,
C. V.
Stancampiano
,
A.
Antonetti
, and
A.
Orszag
,
Appl. Phys. Lett.
39
,
295
(
1981
).
9.
C. H.
Lee
,
Appl. Phys. Lett.
30
,
84
(
1977
).
10.
M. L.
Kulygin
,
G. G.
Denisov
,
E. A.
Novikov
,
A. P.
Fokin
, and
I. A.
Litovsky
,
Radiophys. Quantum Electron.
61
,
603
(
2019
).
11.
M.
Kulygin
,
G.
Denisov
,
S.
Shubin
,
S.
Salahetdinov
, and
E.
Novikov
,
IEEE Trans. Terahertz Sci. Technol.
7
,
225
(
2017
).
12.
M. L.
Kulygin
,
G. G.
Denisov
, and
V. V.
Kocharovsky
,
J. Infrared, Millimeter, Terahertz Waves
31
,
31
(
2010
).
13.
T.
Vogel
,
G.
Dodel
,
E.
Holzhauer
,
H.
Salzmann
, and
A.
Theurer
,
Appl. Opt.
31
,
329
(
1992
).
14.
M.
Kulygin
,
IEEE Trans. Terahertz Sci. Technol.
9
,
186
(
2019
).
15.
S.
Takahashi
,
L.
Brunel
,
D. T.
Edwards
,
J.
van Tol
,
G.
Ramian
,
S.
Han
, and
M. S.
Sherwin
,
Nature
489
,
409
(
2012
).
16.
F. A.
Hegmann
and
M. S.
Sherwin
, in
Proceedings of the SPIE 2842, Millimeter and Submillimeter Waves and Applications III
(
1996
), p.
90
.
17.
K.
Kawase
,
R.
Kato
,
A.
Irizawa
,
M.
Fujimoto
,
K.
Furukawa
,
K.
Kubo
, and
G.
Isoyama
, in
Proceedings of the 37th International Free Electron Laser Conference (FEL 2015), Daejeon, Korea
(
2015
), p.
430
.
18.
E. M.
Choi
,
C. D.
Marchewka
,
I.
Mastovsky
,
J. R.
Sirigiri
,
M. A.
Shapiro
, and
R. J.
Temkin
,
Phys. Plasmas
13
,
023103
(
2006
).
19.
J. M.
Neilson
,
R. L.
Ives
,
S. C.
Schaub
,
W. C.
Guss
,
G.
Rosenzweig
,
R. J.
Temkin
, and
P. M.
Borchard
,
IEEE Trans. Electron Devices
65
,
2316
(
2018
).
20.
M.
Kulygin
,
G.
Denisov
,
K.
Vlasova
,
N.
Andreev
,
S.
Shubin
, and
S.
Salahetdinov
,
Rev. Sci. Instrum.
87
,
014704
(
2016
).
21.
A. A.
Vikharev
,
G. G.
Denisov
,
V. V.
Kocharovskiĭ
,
S. V.
Kuzikov
,
V. V.
Parshin
,
N. Y.
Peskov
,
A. N.
Stepanov
,
D. I.
Sobolev
, and
M. Y.
Shmelev
,
Tech. Phys. Lett.
33
,
735
737
(
2007
).
22.
E.
Nanni
,
V.
Dolgashev
,
A.
Haase
,
S.
Jawla
,
J.
Neilson
,
S.
Schaub
,
B.
Spataro
,
S.
Tantawi
, and
R.
Temkin
, in
Proceedings of the 9th International Particle Accelerator Conference (IPAC'18), Vancouver, BC, Canada
(
2018
), p.
TUZGBE4
.
23.
E. A.
Nanni
,
V.
Dolgashev
,
S.
Jawla
,
J.
Neilson
,
M.
Othman
,
J.
Picard
,
S.
Schaub
,
B.
Spataro
,
S.
Tantawi
, and
R. J.
Temkin
, in
Proceedings of the IEEE 43th International Conference on Infrared Millimeter, Terahertz Waves, Nagoya, Japan
(
2018
), p.
1
.
You do not currently have access to this content.