This work investigates the computational potential of microelectromechanical system (MEMS) networks. In these networks, each MEMS device retains the memory of past inputs through bistability and hysteresis and receives a weighted excitatory or inhibitory feedback from other devices within the network. These interactions are shown to change the dynamics of a small network of MEMS devices to produce selective switching and limit cycles through Hopf bifurcations. Furthermore, we show that interactions within large, trained MEMS networks can be used to perform computational tasks such as object classification and tracking.
References
1.
V.
Kumar
, J. W.
Boley
, Y.
Yang
, H.
Ekowaluyo
, J. K.
Miller
, G. T. C.
Chiu
, and J. F.
Rhoads
, “Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers
,” Appl. Phys. Lett.
98
(15
), 153510
(2011
).2.
B. E.
DeMartini
, J. F.
Rhoads
, M. A.
Zielke
, K. G.
Owen
, S. W.
Shaw
, and K. L.
Turner
, “A single input-single output coupled microresonator array for the detection and identification of multiple analytes
,” Appl. Phys. Lett.
93
(5
), 054102
(2008
).3.
M. I
Younis
and F.
Alsaleem
, “Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena
,” J. Comput. Nonlinear Dyn.
4
(2
), 021010
(2010
).4.
Y.
Kessler
, S.
Krylov
, and A.
Liberzon
, “Flow sensing by buckling monitoring of electrothermally actuated double-clamped microbeams
,” Appl. Phys. Lett.
109
(8
), 083503
(2016
).5.
A.
Kainz
, W.
Hortschitz
, H.
Steiner
, M.
Stifter
, J.
Schalko
, A.
Jachimowicz
, and F.
Keplinger
, “Passive optomechanical electric field strength sensor with built-in vibration suppression
,” Appl. Phys. Lett.
113
(14
), 143505
(2018
).6.
A.
Vanarse
, A.
Osseiran
, and A.
Rassau
, “A review of current neuromorphic approaches for vision, auditory, and olfactory sensors
,” Front. Neurosci.
10
, 115
(2016
).7.
T.
Delbruck
and C. A.
Mead
, “Adaptive photoreceptor with wide dynamic range
,” in IEEE International Symposium on Circuits and Systems, ISCAS'94
(IEEE
, 1994
), Vol. 4
, pp. 339
–342
.8.
C.
Posch
, T.
Serrano-Gotarredona
, B.
Linares-Barranco
, and T.
Delbruck
, “Retinomorphic event-based vision sensors: Bioinspired cameras with spiking output
,” Proc. IEEE
102
(10
), 1470
–1484
(2014
).9.
R. F.
Lyon
and C.
Mead
, “An analog electronic cochlea
,” IEEE Trans. Acoust., Speech, Signal Process.
36
(7
), 1119
–1134
(1988
).10.
V.
Chan
, S. C.
Liu
, and A.
van Schaik
, “AER EAR: A matched silicon cochlea pair with address event representation interface
,” IEEE Trans. Circuits Syst. I
54
(1
), 48
–59
(2007
).11.
K. T.
Ng
, F.
Boussaid
, and A.
Bermak
, “A CMOS single-chip gas recognition circuit for metal oxide gas sensor arrays
,” IEEE Trans. Circuits Syst. I
58
(7
), 1569
–1580
(2011
).12.
A.
Chortos
, J.
Liu
, and Z.
Bao
, “Pursuing prosthetic electronic skin
,” Nat. Mater.
15
(9
), 937
(2016
).13.
T.
Delbruck
and M.
Lang
, “Robotic goalie with 3 ms reaction time at 4% CPU load using event-based dynamic vision sensor
,” Front. Neurosci.
7
, 223
(2013
).14.
V. Y. S.
Chan
, C. T.
Jin
, and A.
van Schaik
, “Neuromorphic audio-visual sensor fusion on a sound-localising robot
,” Front. Neurosci.
6
, 21
(2012
).15.
M.
Osswald
, S. H.
Ieng
, R.
Benosman
, and G.
Indiveri
, “A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems
,” Sci. Rep.
7
, 40703
(2017
).16.
N.
Qiao
, H.
Mostafa
, F.
Corradi
, M.
Osswald
, F.
Stefanini
, D.
Sumislawska
, and G.
Indiveri
, “A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses
,” Front. Neurosci.
9
, 141
(2015
).17.
F. M.
Alsaleem
, M. H.
Hasan
, and M. K.
Tesfay
, “A MEMS nonlinear dynamic approach for neural computing
,” J. Microelectromech. Syst.
27
, 780
(2018
).18.
F. M.
Alsaleem
, M. I.
Younis
, and H. M.
Ouakad
, “On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators
,” J. Micromech. Microeng.
19
(4
), 045013
(2009
).19.
G.
Schöner
and J.
Spencer
, Dynamic Thinking: A Primer on Dynamic Field Theory
(Oxford University Press
, 2016
).20.
R. D.
Beer
, “On the dynamics of small continuous-time recurrent neural networks
,” Adapt. Behav.
3
(4
), 469
–509
(1995
).21.
R. D.
Beer
, “Toward the evolution of dynamical neural networks for minimally cognitive behavior
,” in From Animals to Animats 4: Proceedings of the 4th International Conference on Simulation of Adaptive Behaviour
(1996
), pp. 421
–429
.22.
R. D.
Beer
, “The dynamics of active categorical perception in an evolved model agent
,” Adapt. Behav.
11
(4
), 209
–243
(2003
).23.
L.
Medina
, R.
Gilat
, B.
Robert Ilic
, and S.
Krylov
, “Experimental dynamic trapping of electrostatically actuated bistable micro-beams
,” Appl. Phys. Lett.
108
(7
), 073503
(2016
).24.
D. B.
Strukov
, G. S.
Snider
, D. R.
Stewart
, and R. S.
Williams
, “The missing memristor found
,” Nature
453
(7191
), 80
(2008
).© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.