To determine the density of states distribution of traps within a semiconductor, the thermally stimulated current (TSC) method is often applied. However, the bipolar nature of the typical device structure does not allow for strict unipolar operation, and therefore the method does not allow for the separate evaluation of electron and hole traps. The recombination between electrons and holes makes the interpretation of the data difficult, which becomes an essential drawback of this method. To address these issues, we propose the use of a metal insulator semiconductor (MIS) device structure for TSC measurements, which can be operated strictly unipolar by the sign of the applied voltage during the charging process. Thus, the problem of recombination and bipolar contribution to the measurement signal is avoided. As an additional benefit, the MIS device structure typically results in very low leakage currents, and thus a low noise level for the measurement. This permits precise measurements even below 1 pA, and consequently increases the resolution of the method. This aspect is especially important for fractional TSC, as the measurement time is long and the current low when compared to the envelope measurement. Here, we demonstrate the basic principle of this TSC approach, which we name MIS-TSC, using the well-studied organic semiconductor P3HT as a benchmark.

1.
J.
Steiger
,
R.
Schmechel
, and
H.
Von Seggern
, “
Energetic trap distributions in organic semiconductors
,”
Synth. Met.
129
,
1
7
(
2002
).
2.
T. A. T.
Cowell
and
J.
Woods
, “
The evaluation of thermally stimulated current curves
,”
Brit. J. Appl. Phys.
18
,
1045
1051
(
1967
).
3.
S.
Baranovskii
and
M.
Zhu
, “
Thermally stimulated conductivity in disordered semiconductors at low temperatures
,”
Phys. Rev. B
55
,
16226
16232
(
1997
).
4.
P.
Vigneshwara Raja
and
N. V. L.
Narasimha Murty
, “
Thermally stimulated capacitance in gamma irradiated epitaxial 4H-SiC Schottky barrier diodes
,”
J. Appl. Phys.
123
,
161536
(
2018
).
5.
T.
Yildirim
,
N. M.
Gasanly
, and
S.
Tüzemen
, “
Characterization of defect states in Ga-rich gallium arsenide crystals by thermally stimulated current
,”
Iran. J. Sci. Technol., Trans. A
42
,
947
950
(
2018
).
6.
M.
Kielar
,
M.
Daanoune
,
O.
François-Martin
,
B.
Flament
,
O.
Dhez
,
A. K.
Pandey
,
S.
Chambon
,
R.
Clerc
, and
L.
Hirsch
, “
Insights into the failure mechanisms of organic photodetectors
,”
Adv. Electron. Mater.
4
,
1700526
(
2018
).
7.
J. F. P.
Souza
,
J. P. M.
Serbena
,
E. L.
Kowalski
, and
L. C.
Akcelrud
, “
Determination of P3HT trap site energies by thermally stimulated current
,”
J. Electron. Mater.
47
,
1611
1619
(
2018
).
8.
Z.
Wang
,
M. A.
Kamarudin
,
N. C.
Huey
,
F.
Yang
,
M.
Pandey
,
G.
Kapil
,
T.
Ma
, and
S.
Hayase
, “
Interfacial sulfur functionalization anchoring SnO2 and CH3NH3PbI3 for enhanced stability and trap passivation in perovskite solar cells
,”
ChemSusChem
11
,
3941
3948
(
2018
).
9.
V. I.
Arkhipov
,
E. V.
Emelianova
,
R.
Schmechel
, and
H.
Von Seggern
, “
Thermally stimulated luminescence versus thermally stimulated current in organic semiconductors
,”
J. Non-Cryst. Solids
338-340
,
626
629
(
2004
).
10.
R. R.
Haering
and
E. N.
Adams
, “
Theory and application of thermally stimulated currents in photoconductors
,”
Phys. Rev.
117
,
451
454
(
1960
).
11.
A.
Sautter
,
Data Sheet Clevios HIL-E 100
, 2nd ed. (
Heraeus Deutschland GmbH & Co. KG
,
CHEMPARK Leverkusen
,
2016
).
12.
Y.
Li
, “
Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption
,”
Acc. Chem. Res.
45
,
723
733
(
2012
).
13.
J. U.
Lee
,
Y. D.
Kim
,
J. W.
Jo
,
J. P.
Kim
, and
W. H.
Jo
, “
Efficiency enhancement of P3HT/PCBM bulk heterojunction solar cells by attaching zinc phthalocyanine to the chain-end of P3HT
,”
J. Mater. Chem.
21
,
17209
17218
(
2011
).
14.
A. K.
Thakur
,
A. K.
Mukherjee
,
D. M. G.
Preethichandra
,
W.
Takashima
, and
K.
Kaneto
, “
Charge injection mechanism across the au-poly(3-hexylthiophene-2,5-diyl) interface
,”
J. Appl. Phys.
101
,
104508
(
2007
).
15.
Z.
Guan
,
J. B.
Kim
,
H.
Wang
,
C.
Jaye
,
D. A.
Fischer
,
Y.
Loo
, and
A.
Kahn
, “
Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-c61 butyric acid methyl ester blend
,”
Org. Electron.
11
,
1779
1785
(
2010
).
16.
A. W.
Dweydari
and
C. H. B.
Mee
, “
Work function measurements on (100) and (110) surfaces of silver
,”
Phys. Status Solidi A
27
,
223
230
(
1975
).
17.
N.
Benson
,
A.
Gassmann
,
E.
Mankel
,
T.
Mayer
,
C.
Melzer
,
R.
Schmechel
, and
H.
Von Seggern
, “
The role of Ca traces in the passivation of silicon dioxide dielectrics for electron transport in pentacene organic field effect transistors
,”
J. Appl. Phys.
104
,
054505
(
2008
).
18.
L.
Chua
,
J.
Zaumseil
,
J.
Chang
,
E. C.
Ou
,
P. K.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
, “
General observation of n-type field-effect behaviour in organic semiconductors
,”
Nature
434
,
194
199
(
2005
).
19.
R. A.
Vaia
,
B. B.
Sauer
,
O. K.
Tse
, and
E. P.
Giannelis
, “
Relaxations of confined chains in polymer nanocomposites: Glass transition properties of poly(ethylene oxide) intercalated in montmorillonite
,”
J. Polym. Sci., Part B
35
,
59
67
(
1997
).
20.
C.
Yu
,
T.
Jen
, and
S.
Chen
, “
Traps in regioregular poly(3-hexylthiophene) and its blend with [6,6]-phenyl-c61-butyric acid methyl ester for polymer solar cells
,”
ACS Appl. Mater. Interfaces
5
,
4086
4092
(
2013
).
21.
R.
Schmechel
and
H.
Von Seggern
, “
Electronic traps in organic transport layers
,”
Phys. Status Solidi A
201
,
1215
1235
(
2004
).
22.
J.
Schafferhans
,
A.
Baumann
,
C.
Deibel
, and
V.
Dyakonov
, “
Trap distribution and the impact of oxygen-induced traps on the charge transport in poly(3-hexylthiophene)
,”
Appl. Phys. Lett.
93
,
093303
(
2008
).
23.
H. T.
Nicolai
,
M.
Kuik
,
G. A. H.
Wetzelaer
,
B.
De Boer
,
C.
Campbell
,
C.
Risko
,
J. L.
Bredas
, and
P. W. M.
Blom
, “
Unification of trap-limited electron transport in semiconducting polymers
,”
Nat. Mater.
11
,
882
887
(
2012
).

Supplementary Material

You do not currently have access to this content.