Sets of nanomagnets are often utilized to mimic cellular automata in the design of nanomagnetic logic devices or frustration and emergence of magnetic monopoles in artificial spin ice systems, once that unidirectional arrangement of nanomagnets can behave as artificial spin ice, with frustration arising from second neighbors' dipolar interaction, and present good magnetic monopole mobility due to the low string tension among charges. Here, we present an experimental investigation of magnetic monopole population and mobility as a function of lateral and longitudinal distance among nanomagnets. The observed results could be useful in the nanomagnet logic device design and bring new insights about several possible designs for tuning magnetic monopole unidirectional mobility and transport under a low external magnetic field for further application in magnetricity.

1.
D.
Matzke
, “
Will physical scalability sabotage performance gains?
,”
Computer
30
,
37
39
(
1997
).
2.
S.
Xiao
,
V. P.
Drachev
,
A. V.
Kildishev
,
X.
Ni
,
U. K.
Chettiar
,
H.-K.
Yuan
, and
V. M.
Shalaev
, “
Loss-free and active optical negative-index metamaterials
,”
Nature
466
,
735
(
2010
).
3.
T.
Shinjo
,
T.
Okuno
,
R.
Hassdorf
,
K.
Shigeto
, and
T.
Ono
, “
Magnetic vortex core observation in circular dots of permalloy
,”
Science
289
,
930
932
(
2000
).
4.
C.
de Araujo
,
R.
Silva
,
I.
Ribeiro
,
F.
Nascimento
,
J.
Felix
,
S.
Ferreira
,
L.
Mól
,
W.
Moura-Melo
, and
A.
Pereira
, “
Magnetic vortex crystal formation in the antidot complement of square artificial spin ice
,”
Appl. Phys. Lett.
104
,
092402
(
2014
).
5.
I.
Ribeiro
,
J.
Felix
,
L.
Figueiredo
,
P.
Morais
,
S.
Ferreira
,
W.
Moura-Melo
,
A.
Pereira
,
A.
Quindeau
, and
C.
de Araujo
, “
Investigation of ferromagnetic resonance and magnetoresistance in anti-spin ice structures
,”
J. Phys.: Condens. Matter
28
,
456002
(
2016
).
6.
A.
Khvalkovskiy
,
D.
Apalkov
,
S.
Watts
,
R.
Chepulskii
,
R.
Beach
,
A.
Ong
,
X.
Tang
,
A.
Driskill-Smith
,
W.
Butler
,
P.
Visscher
 et al., “
Basic principles of STT-MRAM cell operation in memory arrays
,”
J. Phys. D: Appl. Phys.
46
,
074001
(
2013
).
7.
N.
Perrissin
,
S.
Lequeux
,
N.
Strelkov
,
A.
Chavent
,
L.
Vila
,
L. D.
Buda-Prejbeanu
,
S.
Auffret
,
R. C.
Sousa
,
I. L.
Prejbeanu
, and
B.
Dieny
, “
A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy
,”
Nanoscale
10
,
12187
12195
(
2018
).
8.
C. I. L.
de Araujo
,
S. G.
Alves
,
L. D.
Buda-Prejbeanu
, and
B.
Dieny
,
Phys. Rev. Appl.
6
,
024015
(
2016
).
9.
A.
Fert
,
V.
Cros
, and
J.
Sampaio
, “
Skyrmions on the track
,”
Nat. Nanotechnol.
8
,
152
(
2013
).
10.
S.
Woo
,
K.
Litzius
,
B.
Krüger
,
M.-Y.
Im
,
L.
Caretta
,
K.
Richter
,
M.
Mann
,
A.
Krone
,
R. M.
Reeve
,
M.
Weigand
 et al., “
Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
,”
Nat. Mater.
15
,
501
(
2016
).
11.
R. P.
Loreto
,
W. A.
Moura-Melo
,
A. R.
Pereira
,
X.
Zhang
,
Y.
Zhou
,
M.
Ezawa
, and
C. I.
de Araujo
, “
Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current
,”
J. Magn. Magn. Mater.
455
,
25
31
(
2018
).
12.
X.
Zhang
,
Y.
Zhou
, and
M.
Ezawa
, “
Magnetic bilayer-skyrmions without skyrmion hall effect
,”
Nat. Commun.
7
,
10293
(
2016
).
13.
C. S.
Lent
,
P. D.
Tougaw
,
W.
Porod
, and
G. H.
Bernstein
, “
Quantum cellular automata
,”
Nanotechnology
4
,
49
(
1993
).
14.
J.
Atulasimha
and
S.
Bandyopadhyay
, “
Bennett clocking of nanomagnetic logic using multiferroic single-domain nanomagnets
,”
Appl. Phys. Lett.
97
,
173105
(
2010
).
15.
B.
Lambson
,
D.
Carlton
, and
J.
Bokor
, “
Exploring the thermodynamic limits of computation in integrated systems: Magnetic memory, nanomagnetic logic, and the Landauer limit
,”
Phys. Rev. Lett.
107
,
010604
(
2011
).
16.
R.
Wang
,
C.
Nisoli
,
R.
Freitas
,
J.
Li
,
W.
McConville
,
B.
Cooley
,
M.
Lund
,
N.
Samarth
,
C.
Leighton
,
V.
Crespi
 et al., “
Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic islands
,”
Nature
439
,
303
(
2006
).
17.
A. P.
Ramirez
,
A.
Hayashi
,
R. J.
Cava
,
R.
Siddharthan
, and
B.
Shastry
, “
Zero-point entropy in ‘spin ice’
,”
Nature
399
,
333
(
1999
).
18.
C.
Castelnovo
,
R.
Moessner
, and
S. L.
Sondhi
, “
Magnetic monopoles in spin ice
,”
Nature
451
,
42
(
2008
).
19.
S.
Ladak
,
D.
Read
,
G.
Perkins
,
L.
Cohen
, and
W.
Branford
, “
Direct observation of magnetic monopole defects in an artificial spin-ice system
,”
Nat. Phys.
6
,
359
(
2010
).
20.
L.
Mól
,
R.
Silva
,
R.
Silva
,
A.
Pereira
,
W.
Moura-Melo
, and
B.
Costa
, “
Magnetic monopole and string excitations in two-dimensional spin ice
,”
J. Appl. Phys.
106
,
063913
(
2009
).
21.
C.
Chang
, “
CH chang, ibid. 88, 1422 (1952)
,”
Phys. Rev.
88
,
1422
(
1952
).
22.
U. B.
Arnalds
,
J.
Chico
,
H.
Stopfel
,
V.
Kapaklis
,
O.
Bärenbold
,
M. A.
Verschuuren
,
U.
Wolff
,
V.
Neu
,
A.
Bergman
, and
B.
Hjörvarsson
, “
A new look on the two-dimensional Ising model: Thermal artificial spins
,”
New J. Phys.
18
,
023008
(
2016
).
23.
E.
Östman
,
U. B.
Arnalds
,
V.
Kapaklis
,
A.
Taroni
, and
B.
Hjörvarsson
, “
Ising-like behaviour of mesoscopic magnetic chains
,”
J. Phys.: Condens. Matter
30
,
365301
(
2018
).
24.
R. P.
Loreto
,
L.
Morais
,
C.
de Araujo
,
W.
Moura-Melo
,
A.
Pereira
,
R.
Silva
,
F.
Nascimento
, and
L.
Mól
, “
Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands
,”
Nanotechnology
26
,
295303
(
2015
).
25.
G.-W.
Chern
,
C.
Reichhardt
, and
C.
Nisoli
, “
Realizing three-dimensional artificial spin ice by stacking planar nano-arrays
,”
Appl. Phys. Lett.
104
,
013101
(
2014
).
26.
Y.
Perrin
,
B.
Canals
, and
N.
Rougemaille
, “
Extensive degeneracy, coulomb phase and magnetic monopoles in artificial square ice
,”
Nature
540
,
410
(
2016
).
27.
F.
Nascimento
,
L.
Mól
,
W.
Moura-Melo
, and
A.
Pereira
, “
From confinement to deconfinement of magnetic monopoles in artificial rectangular spin ices
,”
New J. Phys.
14
,
115019
(
2012
).
28.
I.
Ribeiro
,
F.
Nascimento
,
S.
Ferreira
,
W.
Moura-Melo
,
C.
Costa
,
J.
Borme
,
P.
Freitas
,
G.
Wysin
,
C.
Araujo
, and
A.
Pereira
, “
Realization of rectangular artificial spin ice and direct observation of high energy topology
,”
Sci. Rep.
7
,
13982
(
2017
).
29.
R.
Loreto
,
F.
Nascimento
,
R.
Gonçalves
,
J.
Borme
,
J.
Cezar
,
C.
Nisoli
,
A.
Pereira
, and
C.
de Araujo
, “
Experimental and theoretical evidences for the ice regime in planar artificial spin ices
,”
J. Phys.: Condens. Matter
31
,
025301
(
2018
).
30.
S. T.
Bramwell
, “
Magnetic monopoles: Magnetricity near the speed of light
,”
Nat. Phys.
8
,
703
(
2012
).
31.
S. J.
Blundell
, “
Monopoles, magnetricity, and the stray field from spin ice
,”
Phys. Rev. Lett.
108
,
147601
(
2012
).
32.
W.
Porod
,
G. H.
Bernstein
,
G.
Csaba
,
S. X.
Hu
,
J.
Nahas
,
M. T.
Niemier
, and
A.
Orlov
, “
Nanomagnet logic (nml)
,” in
Field-Coupled Nanocomputing
(
Springer
,
2014
), pp.
21
32
.
33.
A.
Haldar
and
A. O.
Adeyeye
, “
Artificial metamaterials for reprogrammable magnetic and microwave properties
,”
Appl. Phys. Lett.
108
,
022405
(
2016
).
34.
X.
Yang
,
L.
Cai
,
B.
Zhang
,
H.
Cui
, and
M.
Zhang
, “
Micromagnetic simulation of exploratory magnetic logic device with missing corner defect
,”
J. Magn. Magn. Mater.
394
,
391
396
(
2015
).
35.
G. A.
Prinz
, “
Magnetoelectronics
,”
Science
282
,
1660
1663
(
1998
).
36.
B.
Engel
,
J.
Akerman
,
B.
Butcher
,
R.
Dave
,
M.
DeHerrera
,
M.
Durlam
,
G.
Grynkewich
,
J.
Janesky
,
S.
Pietambaram
,
N.
Rizzo
 et al., “
A 4-Mb toggle MRAM based on a novel bit and switching method
,”
IEEE Trans. Magn.
41
,
132
136
(
2005
).
You do not currently have access to this content.