An energy-time entanglement-based dispersive optics quantum key distribution (DO-QKD) is demonstrated experimentally over optical fibers of 20 km. In the experiment, the telecom band energy-time entangled photon pairs are generated through spontaneous four-wave mixing in a silicon waveguide. The arrival time of photons is registered for key generation and security test. High-dimensional encoding in the arrival time of photons is used to increase the information per coincidence of photon pairs. The bin sifting process is optimized by a three-level structure, which significantly reduces the raw quantum bit error rate (QBER) due to timing jitters of detectors and electronics. A raw key generation rate of 151 kbps with a QBER of 4.95% is achieved, in a time bin encoding format with 4 bits per coincidence. This experiment shows that the entanglement-based DO-QKD can be implemented in an efficient and convenient way, which has great potential for quantum secure communication networks in the future.

1.
H.
Bennett Ch
and
G.
Brassard
, “
Quantum cryptography: Public key distribution and coin tossing
,” in
International Conference on Computers, Systems and Signal Processing
(Bangalore, India,
1984
), pp.
175
179
.
2.
C. H.
Bennett
,
G.
Brassard
, and
N.
David Mermin
, “
Quantum cryptography without bell's theorem
,”
Phys. Rev. Lett.
68
,
557
559
(
1992
).
3.
X.-B.
Wang
, “
Beating the photon-number-splitting attack in practical quantum cryptography
,”
Phys. Rev. Lett.
94
,
230503
(
2005
).
4.
Y.
Zhao
,
B.
Qi
, and
H.-K.
Lo
, “
Experimental quantum key distribution with active phase randomization
,”
Appl. Phys. Lett.
90
(
4
),
044106
(
2007
).
5.
A.
Boaron
,
B.
Korzh
,
R.
Houlmann
,
G.
Boso
,
D.
Rusca
,
S.
Gray
,
M.-J.
Li
,
D.
Nolan
,
A.
Martin
, and
H.
Zbinden
, “
Simple 2.5 GHz time-bin quantum key distribution
,”
Appl. Phys. Lett.
112
(
17
),
171108
(
2018
).
6.
C.-Z.
Peng
,
J.
Zhang
,
D.
Yang
,
W.-B.
Gao
,
H.-X.
Ma
,
H.
Yin
,
H.-P.
Zeng
,
T.
Yang
,
X.-B.
Wang
, and
J.-W.
Pan
, “
Experimental long-distance decoy-state quantum key distribution based on polarization encoding
,”
Phys. Rev. Lett.
98
,
010505
(
2007
).
7.
M.
Lucamarini
,
K. A.
Patel
,
J. F.
Dynes
,
B.
Fröhlich
,
A. W.
Sharpe
,
A. R.
Dixon
,
Z. L.
Yuan
,
R. V.
Penty
, and
A. J.
Shields
, “
Efficient decoy-state quantum key distribution with quantified security
,”
Opt. Express
21
(
21
),
24550
24565
(
2013
).
8.
X.
Ma
,
C.-H. F.
Fung
, and
H.-K.
Lo
, “
Quantum key distribution with entangled photon sources
,”
Phys. Rev. A
76
,
012307
(
2007
).
9.
I.
Marcikic
,
A.
Lamas-Linares
, and
C.
Kurtsiefer
, “
Free-space quantum key distribution with entangled photons
,”
Appl. Phys. Lett.
89
(
10
),
101122
(
2006
).
10.
H.-J.
Briegel
,
W.
Dür
,
J. I.
Cirac
, and
P.
Zoller
, “
Quantum repeaters: The role of imperfect local operations in quantum communication
,”
Phys. Rev. Lett.
81
,
5932
5935
(
1998
).
11.
J.
Mower
,
Z.
Zhang
,
P.
Desjardins
,
C.
Lee
,
J. H.
Shapiro
, and
D.
Englund
, “
High-dimensional quantum key distribution using dispersive optics
,”
Phys. Rev. A
87
,
062322
(
2013
).
12.
C.
Lee
,
D.
Bunandar
,
Z.
Zhang
,
G. R.
Steinbrecher
,
P.
Ben Dixon
,
F. N. C.
Wong
,
J. H.
Shapiro
,
S. A.
Hamilton
, and
D.
Englund
, “
High-rate field demonstration of large-alphabet quantum key distribution
,” preprint arXiv:1611.01139 (
2016
).
13.
C.
Lee
,
Z.
Zhang
,
G. R.
Steinbrecher
,
H.
Zhou
,
J.
Mower
,
T.
Zhong
,
L.
Wang
,
X.
Hu
,
R. D.
Horansky
,
V. B.
Verma
,
A. E.
Lita
,
R. P.
Mirin
,
F.
Marsili
,
M. D.
Shaw
,
S. W.
Nam
,
G. W.
Wornell
,
F. N. C.
Wong
,
J. H.
Shapiro
, and
D.
Englund
, “
Entanglement-based quantum communication secured by nonlocal dispersion cancellation
,”
Phys. Rev. A
90
,
062331
(
2014
).
14.
I.
Devetak
and
A.
Winter
, “
Distillation of secret key and entanglement from quantum states
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
461
(
2053
),
207
235
(
2005
).
15.
R.
García-Patrón
and
N. J.
Cerf
, “
Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution
,”
Phys. Rev. Lett.
97
,
190503
(
2006
).
16.
C.
Weedbrook
,
S.
Pirandola
,
R.
García-Patrón
,
N. J.
Cerf
,
T. C.
Ralph
,
J. H.
Shapiro
, and
S.
Lloyd
, “
Gaussian quantum information
,”
Rev. Mod. Phys.
84
,
621
669
(
2012
).
17.
A.
Serafini
,
F.
Illuminati
, and
S.
De Siena
, “
Symplectic invariants, entropic measures and correlations of Gaussian states
,”
J. Phys. B: At., Mol. Opt. Phys.
37
(
2
),
L21
(
2004
).
18.
I.
Ali-Khan
,
C. J.
Broadbent
, and
J. C.
Howell
, “
Large-alphabet quantum key distribution using energy-time entangled bipartite states
,”
Phys. Rev. Lett.
98
,
060503
(
2007
).
19.
L.
Qiong
,
L.
Dan
,
M.
Haokun
,
N.
Xiamu
,
L.
Tian
, and
G.
Hong
, “
Study on error reconciliation in quantum key distribution
,”
Quantum Inf. Comput.
14
(
13-14
),
1117
1135
(
2014
).
20.
D.
Elkouss
,
J.
Martinez-Mateo
, and
V.
Martin
, “
Information reconciliation for quantum key distribution
,”
Quantum Inf. Comput.
11
(
3&4
),
226
238
(
2011
).
21.
R.
Gallager
, “
Low-density parity-check codes
,”
IRE Trans. Inf. Theory
8
(
1
),
21
28
(
1962
).
22.
D.
Deutsch
,
A.
Ekert
,
R.
Jozsa
,
C.
Macchiavello
,
S.
Popescu
, and
A.
Sanpera
, “
Quantum privacy amplification and the security of quantum cryptography over noisy channels
,”
Phys. Rev. Lett.
77
,
2818
2821
(
1996
).
You do not currently have access to this content.