Conversion of medium-grade heat (temperature from 500 to 1000 K) into electricity is important in applications such as waste heat recovery or power generation in solar thermal and co-generation systems. At such temperatures, current solid-state devices lack either high conversion efficiency (thermoelectrics) or high-power density capacity (thermophotovoltaics and thermionics). Near-field thermophotovoltaics (nTPV) theoretically enables high-power density and conversion efficiency by exploiting the enhancement of thermal radiation between a hot emitter and a photovoltaic cell separated by nanometric vacuum gaps. However, significant improvements are possible only at very small gap distances (<100 nm) and when ohmic losses in the photovoltaic cell are negligible. Both requirements are very challenging for current device designs. In this work, we present a thermionic-enhanced near-field thermophotovoltaic (nTiPV) converter consisting of a thermionic emitter (graphite) and a narrow bandgap photovoltaic cell (InAs) coated with low-workfunction nanodiamond films. Thermionic emission through the vacuum gap electrically interconnects the emitter with the front side of the photovoltaic cell and generates an additional thermionic voltage. This avoids the use of metal grids at the front of the cell and virtually eliminates the ohmic losses, which are unavoidable in realistic nTPV devices. We show that nTiPV operating at 1000 K and with a realizable vacuum gap distance of 100 nm enables a 10.7-fold enhancement of electrical power (6.73 W/cm2) and a 2.8-fold enhancement of conversion efficiency (18%) in comparison with a realistic nTPV device having a series resistance of 10 mΩ·cm2.

1.
D. B.
Go
,
J. R.
Haase
,
J.
George
,
J.
Mannhart
,
R.
Wanke
,
A.
Nojeh
, and
R.
Nemanich
,
Front. Mech. Eng.
3
,
13
(
2017
).
2.
K. A. A.
Khalid
,
T. J.
Leong
, and
K.
Mohamed
,
IEEE Trans. Electron Devices
63
,
2231
(
2016
).
3.
T.
Bauer
,
Thermophotovoltaics: Basic Principles and Critical Aspects of System Design
(
Springer
,
2011
).
4.
D. L.
Chubb
,
Fundamentals of Thermophotovoltaic Energy Conversion
(
Elsevier
,
2007
).
5.
J.
He
and
T. M.
Tritt
,
Science
357
,
eaak9997
(
2017
).
6.
B.
Wernsman
,
R. R.
Siergiej
,
S. D.
Link
,
R. G.
Mahorter
,
M. N.
Palmisiano
,
R. J.
Wehrer
,
R. W.
Schultz
,
G. P.
Schmuck
,
R. L.
Messham
,
S.
Murray
,
C. S.
Murray
,
F.
Newman
,
D.
Taylor
,
D. M.
DePoy
, and
T.
Rahmlow
,
IEEE Trans. Electron Devices
51
,
512
(
2004
).
7.
D. N.
Woolf
,
E. A.
Kadlec
,
D.
Bethke
,
A. D.
Grine
,
J. J.
Nogan
,
J. G.
Cederberg
,
D. B.
Burckel
,
T. S.
Luk
,
E. A.
Shaner
, and
J. M.
Hensley
,
Optica
5
,
213
(
2018
).
8.
R.
He
,
D.
Kraemer
,
J.
Mao
,
L.
Zeng
,
Q.
Jie
,
Y.
Lan
,
C.
Li
,
J.
Shuai
,
H. S.
Kim
,
Y.
Liu
,
D.
Broido
,
C.-W.
Chu
,
G.
Chen
, and
Z.
Ren
,
PNAS
113
,
13576
(
2016
).
9.
D. L.
Chubb
,
AIP Conf. Proc.
890
,
297
(
2007
).
10.
N.-P.
Harder
and
M. A.
Green
,
Semicond. Sci. Technol.
18
,
S270
(
2003
).
11.
J. L.
Pan
,
H. K. H.
Choy
, and
C. G.
Fonstad
,
IEEE Trans. Electron Devices
47
,
241
(
2000
).
12.
B.
Zhao
,
P.
Santhanam
,
K.
Chen
,
S.
Buddhiraju
, and
S.
Fan
,
Nano Lett.
18
,
5224
(
2018
).
13.
B.
Song
,
A.
Fiorino
,
E.
Meyhofer
, and
P.
Reddy
,
AIP Adv.
5
,
053503
(
2015
).
14.
J. C.
Cuevas
and
F. J.
García-Vidal
,
ACS Photonics
5
,
3896
(
2018
).
15.
E.
Tervo
,
E.
Bagherisereshki
, and
Z.
Zhang
,
Front. Energy
12
,
5
(
2018
).
16.
A.
Fiorino
,
L.
Zhu
,
D.
Thompson
,
R.
Mittapally
,
P.
Reddy
, and
E.
Meyhofer
,
Nat. Nanotechnol.
13
,
806
8011
(
2018
).
17.
A.
Datas
,
Appl. Phys. Lett.
108
,
143503
(
2016
).
18.
F. A. M.
Koeck
and
R. J.
Nemanich
,
J. Appl. Phys.
112
,
113707
(
2012
).
19.
F. A. M.
Koeck
,
R. J.
Nemanich
,
A.
Lazea
, and
K.
Haenen
,
Diamond Relat. Mater.
18
,
789
(
2009
).
20.
A.
Datas
,
A. B.
Cristobal
,
C.
del Cañizo
,
E.
Antolín
,
M.
Beaughon
,
N.
Nikolopoulos
,
A.
Nikolopoulos
,
M.
Zeneli
,
N.
Sobczak
,
W.
Polkowski
,
M.
Tangstad
,
J.
Safarian
,
D. M.
Trucchi
,
A.
Bellucci
,
M.
Girolami
,
R.
Marx
,
D.
Bestenlehner
,
S.
Lang
,
A.
Vitulano
,
G.
Sabbatella
, and
A.
Martí
, in
AIP Conference Proceedings
(
2018
), p.
170004
.
21.
A.
Mezzi
,
P.
Soltani
,
S.
Kaciulis
,
A.
Bellucci
,
M.
Girolami
,
M.
Mastellone
, and
D. M.
Trucchi
,
Surf. Interface Anal.
50
,
1
7
(
2018
).
22.
J. H.
Lee
,
I.
Bargatin
,
B. K.
Vancil
,
T. O.
Gwinn
,
R.
Maboudian
,
N. A.
Melosh
, and
R. T.
Howe
,
J. Microelectromech. Syst.
23
,
1182
(
2014
).
23.
R. Y.
Belbachir
,
Z.
An
, and
T.
Ono
,
J. Micromech. Microeng.
24
,
085009
(
2014
).
24.
K.
Ito
,
K.
Nishikawa
,
A.
Miura
,
H.
Toshiyoshi
, and
H.
Iizuka
,
Nano Lett.
17
,
4347
(
2017
).
25.
J. I.
Watjen
,
B.
Zhao
, and
Z. M.
Zhang
,
Appl. Phys. Lett.
109
,
203112
(
2016
).
26.
M.
Ghashami
,
H.
Geng
,
T.
Kim
,
N.
Iacopino
,
S. K.
Cho
, and
K.
Park
,
Phys. Rev. Lett.
120
,
175901
(
2018
).
27.
K.
Ito
,
A.
Miura
,
H.
Iizuka
, and
H.
Toshiyoshi
,
Appl. Phys. Lett.
106
,
083504
(
2015
).
28.
J.
DeSutter
,
Thermophotovoltaic Energy Conversion: Emitter Optimization, Near-Field Radiative Recombination and Near-Field Radiative Devices
(
University of Utah
,
2019
).
29.
G. N.
Hatsopoulos
and
E. P.
Gyftopoulos
,
Thermionic Energy Conversion
(
The MIT Press
,
Cambridge, Massachusetts
,
1979
).
30.
S. M.
Rytov
,
Y. A.
Kravtsov
, and
V. I.
Tatarskii
,
Principles of Statistical Radiophysics 3: Elements of Random Fields
(
Springer-Verlag
,
Berlin Heidelberg
,
1989
).
31.
M.
Francoeur
,
M.
Pinar Mengüç
, and
R.
Vaillon
,
J. Quant. Spectrosc. Radiat. Transfer
110
,
2002
(
2009
).
32.
M. P.
Bernardi
,
O.
Dupré
,
E.
Blandre
,
P.-O.
Chapuis
,
R.
Vaillon
, and
M.
Francoeur
,
Sci. Rep.
5
,
11626
(
2015
).
33.
E.
Blandre
,
P.-O.
Chapuis
, and
R.
Vaillon
,
Sci. Rep.
7
,
15860
(
2017
).
34.
M. E.
Levinshtein
,
Handbook Series on Semiconductor Parameters, Vol. 1 Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb
(
World Scientific
,
1996
).
35.
M.
Sotoodeh
,
A. H.
Khalid
, and
A. A.
Rezazadeh
,
J. Appl. Phys.
87
,
2890
(
2000
).
36.
T.
Teraji
,
S.
Koizumi
, and
H.
Kanda
,
Appl. Phys. Lett.
76
,
1303
(
2000
).
37.
J. E.
Gerbi
,
O.
Auciello
,
J.
Birrell
,
D. M.
Gruen
,
B. W.
Alphenaar
, and
J. A.
Carlisle
,
Appl. Phys. Lett.
83
,
2001
(
2003
).
38.
W. W.
Anderson
,
Infrared Phys.
20
,
363
(
1980
).
39.
R. W.
Gammon
and
E. D.
Palik
,
J. Opt. Soc. Am., JOSA
64
,
350
(
1974
).
40.
S.
Adachi
,
Optical Constants of Crystalline and Amorphous Semiconductors: Numerical Data and Graphical Information
(
Springer
US
,
1999
).
41.
I.
Latella
,
P.
Ben-Abdallah
,
S.-A.
Biehs
,
M.
Antezza
, and
R.
Messina
,
Phys. Rev. B
95
,
205404
(
2017
).
42.
A. M.
Zaitsev
,
Optical Properties of Diamond: A Data Handbook
(
Springer-Verlag
,
Berlin Heidelberg
,
2001
).
43.
J.
Lagarias
,
J.
Reeds
,
M.
Wright
, and
P.
Wright
,
SIAM J. Optim.
9
,
112
(
1998
).
You do not currently have access to this content.