Well-defined polarization-electric field double hysteresis loops are rarely observed in pure NaNbO3 (NN) ceramics due to the metastability of the field-induced ferroelectric phase. In order to stabilize the antiferroelectric phase, various ABO3-type binary oxides were incorporated into a NaNbO3 ceramic, where the B-site is occupied with transition elements. In this work, CaSnO3 was chosen to construct the NaNbO3-based solid solution by reducing the Goldschmidt tolerance factor and ionic polarizability. X-ray diffraction patterns, transmission electron microscopy images, and Raman spectra indicate enhanced antiferroelectricity. Typical double hysteresis loops were also observed from polarization-electric field measurements in ambient conditions with slightly weakened maximum polarization as the content of CaSnO3 increased. Our results reveal the generality of this strategy and pave the way for various applications involving high-power energy for NaNbO3-based ceramics.

2.
I.
Burn
and
D. M.
Smyth
,
J. Mater. Sci.
7
,
339
(
1972
).
3.
I.
Burn
, U.S. patent 3638084A (25 January
1972
).
4.
J. P.
Dougherty
, U.S. patent 5545184A (13 August
1996
).
5.
M.
Sharifzadeh Mirshekarloo
,
K.
Yao
, and
T.
Sritharan
,
Appl. Phys. Lett.
97
,
142902
(
2010
).
6.
X.
Tan
,
C.
Ma
,
J.
Frederick
,
S.
Beckman
, and
K. G.
Webber
,
J. Am. Ceram. Soc.
94
,
4091
(
2011
).
7.
L. E.
Cross
and
B. J.
Nicholson
,
London, Edinburgh, Dublin Philos. Mag. J. Sci.
46
,
453
(
1955
).
8.
H.
Shimizu
,
K.
Kobayashi
,
Y.
Mizuno
, and
C. A.
Randall
,
J. Am. Ceram. Soc.
97
,
1791
(
2014
).
9.
T.
Arioka
,
H.
Taniguchi
,
M.
Itoh
,
K.
Oka
,
R.
Wang
, and
D.
Fu
,
Ferroelectrics
401
,
51
(
2010
).
10.
R. H.
Dungan
and
R. D.
Golding
,
J. Am. Ceram. Soc.
47
,
73
(
1964
).
11.
H.
Shimizu
,
H.
Guo
,
S. E.
Reyes-Lillo
,
Y.
Mizuno
,
K. M.
Rabe
, and
C. A.
Randall
,
Dalton Trans.
44
,
10763
(
2015
).
12.
S. K.
Mishra
,
N.
Choudhury
,
S. L.
Chaplot
,
P. S. R.
Krishna
, and
R.
Mittal
,
Phys. Rev. B
76
,
024110
(
2007
).
13.
D. I.
Woodward
,
J.
Knudsen
, and
I. M.
Reaney
,
Phys. Rev. B
72
,
104110
(
2005
).
14.
S.
Karimi
,
I. M.
Reaney
,
Y.
Han
,
J.
Pokorny
, and
I.
Sterianou
,
J. Mater. Sci.
44
,
5102
(
2009
).
15.
H.
Guo
,
H.
Shimizu
,
Y.
Mizuno
, and
C. A.
Randall
,
J. Appl. Phys.
117
,
214103
(
2015
).
16.
L.
Gao
,
H.
Guo
,
S.
Zhang
, and
C. A.
Randall
,
J. Appl. Phys.
120
,
204102
(
2016
).
17.
L.
Gao
,
H.
Guo
,
S.
Zhang
, and
C. A.
Randall
,
Appl. Phys. Lett.
112
,
092905
(
2018
).
18.
L.
Zhao
,
Q.
Liu
,
J.
Gao
,
S.
Zhang
, and
J.-F.
Li
,
Adv. Mater.
29
,
1701824
(
2017
).
19.
I.
Tomeno
,
Y.
Tsunoda
,
K.
Oka
,
M.
Matsuura
, and
M.
Nishi
,
Phys. Rev. B
80
,
104101
(
2009
).
20.
J.
Zhu
,
X.-B.
Chen
,
J.
He
, and
J.-C.
Shen
,
Phys. Lett. A
362
,
471
(
2007
).
21.
Z. X.
Shen
,
X. B.
Wang
,
M. H.
Kuok
, and
S. H.
Tang
,
J. Raman Spectrosc.
29
,
379
(
1998
).
22.
X. B.
Wang
,
Z. X.
Shen
,
Z. P.
Hu
,
L.
Qin
,
S. H.
Tang
, and
M. H.
Kuok
,
J. Mol. Struct.
385
,
1
(
1996
).
23.
H. U.
Khan
,
K.
Alam
,
M.
Mateenullah
,
T.
Blaschke
, and
B. S.
Haq
,
J. Eur. Ceram. Soc.
35
,
2775
(
2015
).
24.
L.
Zhao
,
J.
Gao
,
Q.
Liu
,
S.
Zhang
, and
J.-F.
Li
,
ACS Appl. Mater. Interfaces
10
,
819
(
2018
).
25.
R. A.
Shakhovoy
,
S. I.
Raevskaya
,
L. A.
Shakhovaya
,
D. V.
Suzdalev
,
I. P.
Raevski
,
Y. I.
Yuzyuk
,
A. F.
Semenchev
, and
M. E.
Marssi
,
J. Raman Spectrosc.
43
,
1141
(
2012
).
26.
L.
Chao
,
Y.
Hou
,
M.
Zheng
, and
M.
Zhu
,
Appl. Phys. Lett.
108
,
212902
(
2016
).
27.
H.
Guo
,
H.
Shimizu
, and
C. A.
Randall
,
Appl. Phys. Lett.
107
,
112904
(
2015
).
28.
Y. I.
Yuzyuk
,
P.
Simon
,
E.
Gagarina
,
L.
Hennet
,
D.
Thiaudière
,
V. I.
Torgashev
,
S. I.
Raevskaya
,
I. P.
Raevskii
,
L. A.
Reznitchenko
, and
J. L.
Sauvajol
,
J. Phys.: Condens. Matter
17
,
4977
(
2005
).
29.
Y.
Xu
,
W.
Hong
,
Y.
Feng
, and
X.
Tan
,
Appl. Phys. Lett.
104
,
052903
(
2014
).
30.
R.
Zuo
,
J.
Fu
, and
H.
Qi
,
Acta Mater.
161
,
352
359
(
2018
).
31.
X.
Tan
,
Z.
Xu
,
X.
Liu
, and
Z.
Fan
,
Mater. Res. Lett.
6
,
159
(
2018
).

Supplementary Material

You do not currently have access to this content.