The rapid development of large-volume and high-speed mobile communication systems has increased the demand for high-frequency and wide-band surface acoustic wave (SAW) devices. In this work, ZnO films and V-doped ZnO (V:ZnO) films with (0002) orientation were grown on SiC substrates using a magnetron sputtering method. High-frequency SAW resonators with the resonant frequency ranging from 4 GHz to 6 GHz were fabricated on the above structures. V:ZnO/SiC SAW resonators exhibited a significantly increased electromechanical coupling coefficient (K2) in the range of 2.80%–5.12%, in a wide normalized thickness range, which is more than a 75% increase compared to that of ZnO-based SAW resonators. Besides, the high quality factor Q ranging from 431 to 593 and an improvement in the figure of merit value were observed for the V:ZnO/SiC SAW resonators operating at 4–6 GHz. Finally, 4.58 GHz SAW filters using V:ZnO films with a larger bandwidth and a lower insertion loss were achieved. This work clearly shows that the ZnO/SiC SAW properties can be improved by V doping, and the V:ZnO/SiC structures have great potential for application in high-frequency and wide-band SAW filters.

1.
C. C. W.
Ruppel
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
64
,
1390
(
2017
).
2.
Y. Q.
Fu
,
J. K.
Luo
,
N. T.
Nguyen
,
A. J.
Walton
,
A. J.
Flewitt
,
X. T.
Zu
,
G.
McHale
,
A.
Matthews
,
E.
Iborra
,
H.
Du
 et al,
Prog. Mater. Sci.
89
,
31
(
2017
).
3.
Y.
Zhu
,
N.
Wang
,
G.
Chua
,
C.
Sun
,
N.
Singh
, and
Y.
Gu
,
IEEE Electron Device Lett.
38
,
1481
(
2017
).
4.
A.
Holm
,
Q.
Stürzer
,
Y.
Xu
, and
R.
Weigel
,
Microelectron. Eng.
31
,
123
(
1996
).
5.
K.
Hashimoto
,
M.
Yamaguchi
,
S.
Mineyoshi
,
O.
Kawachi
,
M.
Ueda
,
G.
Endoh
, and
O.
Ikata
,
Proc. EEE Ultrason. Symp.
1
,
245
(
1997
).
6.
T.
Kimura
,
Y.
Kishimoto
,
M.
Omura
, and
K.
Hashimoto
,
Jpn. J. Appl. Phys.
57
,
07LD15
(
2018
).
7.
S.
Fu
,
Q.
Li
,
S.
Gao
,
G.
Wang
,
F.
Zeng
, and
F.
Pan
,
Appl. Surf. Sci.
402
,
392
(
2017
).
8.
J. T.
Luo
,
F.
Zeng
,
F.
Pan
,
H. F.
Li
,
J. B.
Niu
,
R.
Jia
, and
M.
Liu
,
Appl. Surf. Sci.
256
,
3081
(
2010
).
9.
Y.
Takagaki
,
P. V.
Santos
,
E.
Wiebicke
,
O.
Brandt
,
P.-H.
Schönherr
, and
K. H.
Ploog
,
Appl. Phys. Lett.
81
,
2538
(
2002
).
10.
Q.
Li
,
L.
Qian
,
S.
Fu
,
C.
Song
,
F.
Zeng
, and
F.
Pan
,
J. Phys. D: Appl. Phys.
51
,
145305
(
2018
).
11.
S.
Fu
,
W.
Wang
,
L.
Qian
,
Q.
Li
,
Z.
Lu
,
J.
Shen
,
C.
Song
,
F.
Zeng
, and
F.
Pan
,
IEEE Electron Device Lett.
40
,
103
(
2019
).
12.
Q.
Zhang
,
T.
Han
,
J.
Chen
,
W.
Wang
, and
K.
Hashimoto
,
Diamond Relat. Mater.
58
,
31
(
2015
).
13.
Y. J.
Chen
,
S.
Brahma
,
C. P.
Liu
, and
J.-L.
Huang
,
J. Alloys Compd.
728
,
1248
(
2017
).
14.
H.
Yadav
,
N.
Sinha
,
S.
Goel
, and
B.
Kumar
,
J. Alloys Compd.
689
,
333
(
2016
).
15.
Y. C.
Yang
,
C.
Song
,
X. H.
Wang
,
F.
Zeng
, and
F.
Pan
,
J. Appl. Phys.
103
,
074107
(
2008
).
16.
J. T.
Luo
,
Y. C.
Yang
,
X. Y.
Zhu
,
G.
Chen
,
F.
Zeng
, and
F.
Pan
,
Phy. Rev. B
82
,
014116
(
2010
).
17.
Y. C.
Yang
,
C.
Song
,
X. H.
Wang
,
F.
Zeng
, and
F.
Pan
,
Appl. Phys. Lett.
92
,
012907
(
2008
).
18.
Y. Q.
Chen
,
X. J.
Zheng
, and
X.
Feng
,
Nanotechnology
21
,
055708
(
2010
).
19.
M.
Laurenti
,
M.
Castellino
,
D.
Perrone
,
A.
Asvarov
,
G.
Canavese
, and
A.
Chiolerio
,
Sci. Rep.
7
,
41957
(
2017
).
20.
L. M.
Cornaglia
and
E. A.
Lombardo
,
Appl. Catal. A
127
,
125
(
1995
).
21.
A.
Müller
,
I.
Giangu
,
A.
Stavrinidis
,
A.
Stefanescu
,
G.
Stavrinidis
,
A.
Dinescu
, and
G.
Konstantinidis
,
IEEE Electron Device Lett.
36
,
1299
(
2015
).
22.
S.
Wu
,
R.
Ro
, and
Z.-X.
Lin
,
Appl. Phys. Lett.
94
,
32908
(
2009
).
23.
T.-T.
Wu
and
Y.-Y.
Chen
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
49
,
142
(
2002
).
24.
Y.
Chen
,
G.
Saraf
,
Y.
Lu
,
L. S.
Wielunski
, and
T.
Siegrist
,
J. Vac. Sci. Technol. A
25
,
857
(
2007
).
25.
J. T.
Luo
,
P.
Fan
,
F.
Pan
,
F.
Zeng
,
D. P.
Zhang
,
Z. H.
Zheng
,
G. X.
Liang
, and
X. M.
Cai
,
Phys. Status Solidi-RRL
6
,
436
(
2012
).
26.
S.
Shikata
,
A.
Hachigo
,
H.
Nakahata
, and
M.
Narita
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
54
,
1308
(
2004
).
27.
E.
Iborra
,
A.
Sanz-Hervás
,
M.
Clement
,
L.
Vergara
,
J.
Olivares
, and
J.
Sangrador
,
Proc. IEEE Ultrason. Symp.
3
,
1808
(
2005
).
28.
A.
Sanz-Hervás
,
M.
Clement
,
E.
Iborra
,
L.
Vergara
,
J.
Olivares
, and
J.
Sangrador
,
Appl. Phys. Lett.
88
,
161915
(
2006
).
29.
D.
Berlincourt
,
H.
Jaffe
, and
L. R.
Shiozawa
,
Phys. Rev.
129
,
1009
(
1963
).
30.
D. A.
Feld
,
R.
Parker
,
R.
Ruby
,
P.
Bradley
, and
S.
Dong
,
Proc. IEEE Ultrason. Symp.
431
(
2008
).
31.
S. H.
Lee
,
K. H.
Yoon
, and
J. K.
Lee
,
J. Appl. Phys.
92
,
4062
(
2002
).
32.
A.
Lozzi
,
E. T. T.
Yen
,
P.
Muralt
, and
L. G.
Villanueva
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
66
,
146
(
2019
).
33.
T.
Yokoyama
,
Y.
Iwazaki
,
Y.
Onda
,
T.
Nishihara
,
Y.
Sasajima
, and
M.
Ueda
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
61
,
1322
(
2014
).
34.
M.
Moreira
,
J.
Bjurström
,
I.
Katardjev
, and
V.
Yantchev
,
Vacuum
86
,
23
(
2011
).
35.
F. Z.
Bi
and
B. P.
Barber
,
IEEE Microwave Mag.
9
,
65
(
2008
).
36.
M.
Rinaldi
,
C.
Zuniga
,
C.
Zuo
, and
G.
Piazza
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
38
(
2010
).
37.
R.
Ruby
,
P.
Bradley
,
D.
Clark
,
D.
Feld
,
T.
Jamneala
, and
W.
Kun
,
IEEE MTT-S Int. Microwave Symp. Dig.
2
,
931
(
2004
).
You do not currently have access to this content.