Femtosecond transient absorption (TA) as a probe of ultrafast carrier dynamics was conducted at near-infrared wavelengths in a series of GaN crystals. The TA kinetics in all the GaN crystals appeared to be single exponential under one-photon (1P) excitation but biexponential under two-photon (2P) excitation, which was inconsistent with previous experimental reports and model predictions. Surface recombination and carrier diffusion could be eliminated and the TA responses were identified as phonon-assisted indirect free-carrier absorption. Modelling the bulk carrier dynamics with a simplified model revealed that, at a 1P high carrier injection level, the carrier recombination was limited by the slow capture rate of electrons via deep defects, while at a 2P low carrier injection level, the initial carrier lifetime decreased remarkably due to fast hole capturing and could be further controlled by the inherent carrier and/or dislocation concentrations.

1.
S.
Nakamura
,
S.
Pearton
, and
G.
Fasol
,
The Blue Laser Diode: The Complete Story
(
Springer Science and Business Media
,
2013
).
3.
C.
Xiong
,
W.
Pernice
,
K. K.
Ryu
,
C.
Schuck
,
K. Y.
Fong
,
T.
Palacios
, and
H. X.
Tang
,
Opt. Express
19
,
10462
(
2011
).
4.
A. W.
Bruch
,
C.
Xiong
,
B.
Leung
,
M.
Poot
,
J.
Han
, and
H. X.
Tang
,
Appl. Phys. Lett.
107
,
141113
(
2015
).
5.
L.
Monteagudo-Lerma
,
F. B.
Naranjo
,
S.
Valdueza-Felip
,
M.
Jiménez-Rodríguez
,
E.
Monroy
,
P. A.
Postigo
,
P.
Corredera
, and
M.
González-Herráez
,
Phys. Status Solidi A
213
,
1269
(
2016
).
6.
C. G.
Van de Walle
and
J.
Neugebauer
,
J. Appl. Phys.
95
,
3851
(
2004
).
7.
M. A.
Reshchikov
and
H.
Morkoc
,
J. Appl. Phys.
97
,
061301
(
2005
).
8.
S. F.
Chichibu
,
A.
Uedono
,
K.
Kojima
,
H.
Ikeda
,
K.
Fujito
,
S.
Takashima
,
M.
Edo
,
K.
Ueno
, and
S.
Ishibashi
,
J. Appl. Phys.
123
,
161413
(
2018
).
9.
C. E.
Dreyer
,
A.
Alkauskas
,
J. L.
Lyons
,
J. S.
Speck
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
108
,
141101
(
2016
).
10.
D.
Wickramaratne
,
J.-X.
Shen
,
C. E.
Dreyer
,
M.
Engel
,
M.
Marsman
,
G.
Kresse
,
S.
Marcinkevičius
,
A.
Alkauskas
, and
C. G.
Van de Walle
,
Appl. Phys. Lett.
109
,
162107
(
2016
).
11.
K.
Jarašiūnas
,
T.
Malinauskas
,
S.
Nargelas
,
V.
Gudelis
,
J. V.
Vaitkus
,
V.
Soukhoveev
, and
A.
Usikov
,
Phys. Status Solidi B
247
,
1703
(
2010
).
12.
Y.-T.
Chen
,
C.-Y.
Yang
,
P.-C.
Chen
,
J.-K.
Sheu
, and
K.-H.
Lin
,
Sci. Rep.
7
,
5788
(
2017
).
13.
S.
Juršėnas
,
S.
Miasojedovas
,
A.
Žukauskas
,
B.
Lucznik
,
I.
Grzegory
, and
T.
Suski
,
Appl. Phys. Lett.
89
,
172119
(
2006
).
14.
Y.
Zhong
,
K. S.
Wong
,
W.
Zhang
, and
D. C.
Look
,
Appl. Phys. Lett.
89
,
022108
(
2006
).
15.
K. W.
Williams
,
N. R.
Monahan
,
D. D.
Koleske
,
M. H.
Crawford
, and
X.-Y.
Zhu
,
Appl. Phys. Lett.
108
,
141105
(
2016
).
16.
Y. C.
Shen
,
G. O.
Mueller
,
S.
Watanabe
,
N. F.
Gardner
,
A.
Munkholm
, and
M. R.
Krames
,
Appl. Phys. Lett.
91
,
141101
(
2007
).
17.
P.
Ščajev
,
K.
Jarašiūnas
,
S.
Okur
,
Ü.
Özgür
, and
H.
Morkoç
,
J. Appl. Phys.
111
,
023702
(
2012
).
18.
P.
Dugar
,
M.
Kumar
,
S. K. T.
C
,
N.
Aggarwal
, and
G.
Gupta
,
RSC Adv.
5
,
83969
(
2015
).
19.
Y.
Fang
,
J.
Yang
,
Y.
Yang
,
X.
Wu
,
Z.
Xiao
,
F.
Zhou
, and
Y.
Song
,
J. Phys. D: Appl. Phys.
49
,
045105
(
2016
).
20.
Y.
Fang
,
J.
Yang
,
Z.
Xiao
,
J.
Zhang
,
Y.
Chen
,
Q.
Wu
, and
Y.
Song
,
Appl. Phys. Lett.
110
,
161902
(
2017
).
21.
Y.
Fang
,
X.
Wu
,
J.
Yang
,
G.
Chen
,
Y.
Chen
,
Q.
Wu
, and
Y.
Song
,
Appl. Phys. Lett.
112
,
201904
(
2018
).
22.
P.
Ščajev
,
A.
Usikov
,
V.
Soukhoveev
,
R.
Aleksiejūnas
, and
K.
Jarašiūnas
,
Appl. Phys. Lett.
98
,
202105
(
2011
).
23.
E.
Meissner
,
S.
Schweigard
,
J.
Friedrich
,
T.
Paskova
,
K.
Udwary
,
G.
Leibiger
, and
F.
Habel
,
J. Cryst. Growth
340
,
78
(
2012
).
24.
Y.
Fang
,
Z.
Xiao
,
X.
Wu
,
F.
Zhou
,
J.
Yang
,
Y.
Yang
, and
Y.
Song
,
Appl. Phys. Lett.
106
,
251903
(
2015
).
25.
C.-Y.
Yang
,
C.-T.
Chia
,
H.-Y.
Chen
,
S.
Gwo
, and
K.-H.
Lin
,
Appl. Phys. Lett.
105
,
212105
(
2014
).
26.
W.
Shockley
and
W. T.
Read
,
Phys. Rev.
87
,
835
(
1952
).
27.
28.
Y.
Fang
,
X.-Z.
Wu
,
F.
Ye
,
X.-Y.
Chu
,
Z.-G.
Li
,
J.-Y.
Yang
, and
Y.-L.
Song
,
J. Appl. Phys.
114
,
103507
(
2013
).
29.
D.
Tsokkou
,
A.
Othonos
, and
M.
Zervos
,
J. Appl. Phys.
106
,
054311
(
2009
).
30.
Z.
Li
,
C.
Kolodziej
,
T.
Zhang
,
C.
McCleese
,
A.
Kovalsky
,
Y.
Zhao
,
W. R. L.
Lambrecht
, and
C.
Burda
,
J. Am. Chem. Soc.
140
,
11811
(
2018
).
31.
S.
Visvanathan
,
Phys. Rev.
120
,
376
(
1960
).
32.
A.
Chandola
,
R.
Pino
, and
P. S.
Dutta
,
Semicond. Sci. Technol.
20
,
886
(
2005
).
33.
B. K.
Ridley
,
Quantum Processes in Semiconductors
(
Oxford University Press
,
2013
).
34.
P.
Ščajev
,
K.
Jarašiūnas
,
Ü.
Özgür
,
H.
Morkoç
,
J.
Leach
, and
T.
Paskova
,
Appl. Phys. Lett.
100
,
022112
(
2012
).
35.
A.
David
and
M. J.
Grundmann
,
Appl. Phys. Lett.
96
,
103504
(
2010
).
36.
D. O.
Demchenko
,
I. C.
Diallo
, and
M. A.
Reshchikov
,
Phys. Rev. Lett.
110
,
087404
(
2013
).
37.
M. A.
Reshchikov
,
N. M.
Albarakati
,
M.
Monavarian
,
V.
Avrutin
, and
H.
Morkoç
,
J. Appl. Phys.
123
,
161520
(
2018
).
38.
E.
Gaubas
,
S.
Juršėnas
,
S.
Miasojedovas
,
J.
Vaitkus
, and
A.
Žukauskas
,
J. Appl. Phys.
96
,
4326
(
2004
).
39.
Y.
Yeo
,
T.
Chong
, and
M.
Li
,
J. Appl. Phys.
83
,
1429
(
1998
).
40.
J.
Leuthold
,
C.
Koos
, and
W.
Freude
,
Nat. Photonics
4
,
535
(
2010
).
41.
M.
Suzuki
,
T.
Uenoyama
, and
A.
Yanase
,
Phys. Rev. B
52
,
8132
(
1995
).
42.
A.
Kasic
,
M.
Schubert
,
S.
Einfeldt
,
D.
Hommel
, and
T. E.
Tiwald
,
Phys. Rev. B
62
,
7365
(
2000
).
43.
M. A.
Reshchikov
and
R. Y.
Korotkov
,
Phys. Rev. B
64
,
115205
(
2001
).
You do not currently have access to this content.