We have measured the thermal expansion of Ni nanowires (NWs) electrodeposited into self-organized nanoporous amorphous aluminum oxide (AAO) membranes without an Al substrate using X-ray diffraction between 110 K and 350 K. The results indicate an average thermal expansion of the Ni NWs—along the wire axis—of α¯NiNW=1.6±1.5×106K1. Assuming a bulk-like thermal expansion of the isolated Ni NWs, this result indicates that AAO also has a negative thermal expansion. We estimate the thermal expansion of nanoporous AAO to be αAAO=5±1×106K1. We show that data obtained previously on the thermal expansion of metallic NWs grown in the nanoporous AAO may be interpreted as originating from a negative thermal expansion of the matrix.

1.
2.
H.
Masuda
and
K.
Fukuda
,
Science
268
,
1466
(
1995
).
3.
W.
Lee
and
S. J.
Park
,
Chem. Rev.
114
,
7487
(
2014
).
4.
S.
Ko
,
D.
Lee
,
S.
Jee
,
H.
Park
,
K.
Lee
, and
W.
Hwang
,
Thin Solid Films
515
,
1932
(
2006
).
5.
N.
Tsyntsaru
,
B.
Kavas
,
J.
Sort
,
M.
Urgen
, and
J.-P.
Celis
,
Mater. Chem. Phys.
148
,
887
(
2014
).
6.
M. K.
McQuaig
, Jr.
,
A.
Toro
,
W.
Van Geertruyden
, and
W. Z.
Misiolek
,
J. Mater. Sci.
46
,
243
(
2011
).
7.
B.
Abad
,
J.
Maiz
, and
M. S.
Martin-González
,
J. Phys. Chem. C
120
,
5361
(
2016
).
8.
X. R.
Zhang
,
T. S.
Fisher
,
A.
Raman
, and
T. D.
Sands
,
Nanoscale Microscale Thermophys. Eng.
13
,
243
(
2009
).
9.
E.
VassalloBrigneti
,
C. A.
Ramos
, and
M.
Vázquez
(to be published).
10.
H.
Hayashi
,
M.
Watanabe
, and
H.
Inaba
,
Thermochim. Acta
359
,
77
(
2000
).
11.
X. J.
Xu
,
G. T.
Fei
,
W. H.
Yu
,
L.
Chen
,
L. D.
Zhang
,
X. J.
Xiao
,
P.
Hao
, and
B. Y.
Wang
,
Appl. Phys. Lett.
88
,
211902
(
2006
).
12.
W. F.
Zhou
,
G. T.
Fei
,
X. F.
Li
,
S. H.
Xu
,
L.
Chen
,
B.
Wu
, and
L. D.
Zhang
,
J. Phys. Chem. C
113
,
9568
(
2009
).
13.
Q.
Cai
,
J.
Zhang
,
X.
Chen
,
Z.
Chen
,
W.
Wang
,
G.
Mo
,
Z.
Wu
,
L.
Zhang
, and
W.
Pan
,
J. Phys.: Condens. Matter
20
,
115205
(
2008
).
14.
S.
Kato
,
H.
Kitazawa
, and
G.
Kido
,
J. Magn. Magn. Mater.
272–276
,
1666
(
2004
).
15.
A.
Kumar
,
S.
Fähler
,
H.
Schlörb
,
K.
Leistner
, and
L.
Schultz
,
Phys Rev. B
73
,
064421
(
2006
).
16.
D.
Navas
,
K. R.
Pirota
,
P.
Mendoza Zelis
,
D.
Velázquez
,
C. A.
Ross
, and
M.
Vázquez
,
J. Appl. Phys.
103
,
07D523
(
2008
).
17.
A.
Santos
,
T.
Kumeria
, and
D.
Losic
,
Trends Anal. Chem.
44
,
25
(
2013
).
18.
K.
Nielsch
,
R. B.
Wehrspohn
,
J.
Barthel
,
J.
Kirschner
,
U.
Gösele
,
S. F.
Fischer
, and
H.
Kronmüller
,
Appl. Phys. Lett.
79
,
1360
(
2001
).
19.
K.
Nielsch
,
A. P.
Muller
,
A.-P.
Li
, and
U.
Gösele
,
Adv. Mater.
12
,
582
(
2000
).
20.
K.
Nielsch
,
J.
Choi
,
K.
Schwirn
,
R. B.
Wehrspohn
, and
U.
Gösele
,
Nano Lett.
2
,
677
(
2002
).
21.
F. C.
Nix
and
D.
MacNair
,
Phys Rev.
60
,
597
(
1941
).
22.
R.
López-Ruiz
,
C.
Magén
,
F.
Luis
, and
J.
Bartolomé
,
J. Appl. Phys.
112
,
073906
(
2012
).
23.
P. K.
Mallick
,
Fiber Reinforced Composites: Materials, Manufacturing and Design
(
CRC Press
,
Boca Raton, FL
,
2007
), Chap. 3.
24.
L.
Piraux
,
G.
Hamoir
,
A.
Encinas
,
J.
De La Torre Medina
, and
F.
Abreu Araujo
,
J. Appl. Phys.
114
,
123907
(
2013
).
25.
H. M.
Ledbetter
and
R. P.
Reed
,
J. Phys. Chem. Ref. Data
2
,
531
(
1973
).
26.
I.-K.
Suh
,
H.
Ohta
, and
Y.
Waseda
,
J. Mat. Sci.
23
,
757
(
1988
).
28.
X. J.
Xu
,
S. F.
Yu
,
S. P.
Lau
,
L.
Li
, and
B. C.
Zhao
,
J. Phys. Chem. C
112
,
4168
(
2008
).
29.
R.
Zhang
and
R. F.
Willis
,
Phys. Rev. Lett.
86
,
2665
(
2001
).
30.
J.
Wang
,
W.
Wu
,
F.
Zhao
, and
G.-M.
Zhao
,
Phys. Rev. B
84
,
174440
(
2011
).
31.
M. N.
Fisher
and
M. N.
Barber
,
Phys. Rev. Lett.
28
,
1516
(
1972
).
32.
D.
Lederman
,
C. A.
Ramos
,
V.
Jaccarino
, and
J. L.
Cardy
,
Phys. Rev. B
48
,
8365
(
1993
).
33.
D. T.
Ho
,
S. Y.
Kwon
,
H. S.
Park
, and
S. Y.
Kim
,
Nano Lett.
17
,
5113
(
2017
).
34.
M. T.
Dove
and
H.
Fang
,
Rep. Prog. Phys.
79
,
066503
(
2016
).

Supplementary Material

You do not currently have access to this content.