We report electrical conductivity measurements of polymethyl-methacrylate filled by onion-like carbon particles with a primary particle size of ≈5 nm. We show that the conductivity σ is exceptionally high even at very low loadings and that its low-temperature dependence follows a Coulomb gap regime at atmospheric pressure and an activated behavior at a pressure of 2 GPa. We interpret this finding in terms of the enhancement under the applied pressure of the effective dielectric permittivity within the aggregates of onion-like carbons, which improves the screening of the Coulomb interaction and reduces the optimal hopping distance of the electrons.
© 2019 Author(s).
2019
Author(s)
You do not currently have access to this content.