Spin-torque nano-oscillators can emulate neurons at the nanoscale. Recent works show that the non-linearity of their oscillation amplitude can be leveraged to achieve waveform classification for an input signal encoded in the amplitude of the input voltage. Here, we show that the frequency and phase of the oscillator can also be used to recognize waveforms. For this purpose, we phase-lock the oscillator to the input waveform, which carries information in its modulated frequency. In this way, we considerably decrease the amplitude, phase, and frequency noise. We show that this method allows classifying sine and square waveforms with an accuracy above 99% when decoding the output from the oscillator amplitude, phase, or frequency. We find that recognition rates are directly related to the noise and non-linearity of each variable. These results prove that spin-torque nano-oscillators offer an interesting platform to implement different computing schemes leveraging their rich dynamical features.

1.
F.
Macià
,
A. D.
Kent
, and
F. C.
Hoppensteadt
,
Nanotechnology
22
,
095301
(
2011
).
2.
M. R.
Pufall
,
W. H.
Rippard
,
G.
Csaba
,
D. E.
Nikonov
,
G. I.
Bourianoff
, and
W.
Porod
,
IEEE J. Explor. Solid-State Comput. Devices Circuits
1
,
76
(
2015
).
3.
D. E.
Nikonov
,
G.
Csaba
,
W.
Porod
,
T.
Shibata
,
D.
Voils
,
D.
Hammerstrom
,
I. A.
Young
, and
G. I.
Bourianoff
,
IEEE J. Explor. Solid-State Comput. Devices Circuits
1
,
85
(
2015
).
4.
K.
Yogendra
,
D.
Fan
, and
K.
Roy
,
IEEE Trans. Magn.
51
,
4003909
(
2015
).
5.
J.
Grollier
,
D.
Querlioz
, and
M. D.
Stiles
,
Proc. IEEE
104
,
2024
(
2016
).
6.
M.
Riou
,
F. A.
Araujo
,
J.
Torrejon
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
, in
2017 IEEE International Electron Devices Meeting (IEDM)
(
2017
), pp.
36.3.1
36.3.4
.
7.
J.
Torrejon
,
M.
Riou
,
F. A.
Araujo
,
S.
Tsunegi
,
G.
Khalsa
,
D.
Querlioz
,
P.
Bortolotti
,
V.
Cros
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
,
M. D.
Stiles
, and
J.
Grollier
,
Nature
547
,
428
(
2017
).
8.
E.
Vassilieva
,
G.
Pinto
,
J. A.
De Barros
, and
P.
Suppes
,
IEEE Trans. Neural Networks
22
,
84
(
2011
).
9.
F. C.
Hoppensteadt
and
E. M.
Izhikevich
,
Phys. Rev. Lett.
82
,
2983
(
1999
).
10.
M.
Quinsat
,
D.
Gusakova
,
J. F.
Sierra
,
J. P.
Michel
,
D.
Houssameddine
,
B.
Delaet
,
M. C.
Cyrille
,
U.
Ebels
,
B.
Dieny
,
L. D.
Buda-Prejbeanu
,
J. A.
Katine
,
D.
Mauri
,
A.
Zeltser
,
M.
Prigent
,
J. C.
Nallatamby
, and
R.
Sommet
,
Appl. Phys. Lett.
97
,
182507
(
2010
).
11.
M. W.
Keller
,
M. R.
Pufall
,
W. H.
Rippard
, and
T. J.
Silva
,
Phys. Rev. B: Condens. Matter Mater. Phys.
82
,
054416
(
2010
).
12.
E.
Grimaldi
,
A.
Dussaux
,
P.
Bortolotti
,
J.
Grollier
,
G.
Pillet
,
A.
Fukushima
,
H.
Kubota
,
K.
Yakushiji
,
S.
Yuasa
, and
V.
Cros
,
Phys. Rev. B: Condens. Matter Mater. Phys.
89
,
104404
(
2014
).
13.
A.
Slavin
and
V.
Tiberkevich
,
IEEE Trans. Magn.
45
,
1875
(
2009
).
14.
R.
Lebrun
,
A.
Jenkins
,
A.
Dussaux
,
N.
Locatelli
,
S.
Tsunegi
,
E.
Grimaldi
,
H.
Kubota
,
P.
Bortolotti
,
K.
Yakushiji
,
J.
Grollier
,
A.
Fukushima
,
S.
Yuasa
, and
V.
Cros
,
Phys. Rev. Lett.
115
,
017201
(
2015
).
15.
S. I.
Kiselev
,
J. C.
Sankey
,
I. N.
Krivorotov
,
N. C.
Emley
,
R. J.
Schoelkopf
,
R. A.
Buhrman
, and
D. C.
Ralph
,
Nature
425
,
380
(
2003
).
16.
W. H.
Rippard
,
M. R.
Pufall
,
S.
Kaka
,
S. E.
Russek
, and
T. J.
Silva
,
Phys. Rev. Lett.
92
,
027201
(
2004
).
17.
H.
Sato
,
E. C.
Enobio
,
M.
Yamanouchi
,
S.
Ikeda
,
S.
Fukami
,
S.
Kanai
,
F.
Matsukura
, and
H.
Ohno
,
Appl. Phys. Lett.
105
,
062403
(
2014
).
18.
W. H.
Rippard
,
M. R.
Pufall
,
S.
Kaka
,
T. J.
Silva
,
S. E.
Russek
, and
J. A.
Katine
,
Phys. Rev. Lett.
95
,
067203
(
2005
).
19.
M.
Quinsat
,
J. F.
Sierra
,
I.
Firastrau
,
V.
Tiberkevich
,
A.
Slavin
,
D.
Gusakova
,
L. D.
Buda-Prejbeanu
,
M.
Zarudniev
,
J. P.
Michel
,
U.
Ebels
,
B.
Dieny
,
M. C.
Cyrille
,
J. A.
Katine
,
D.
Mauri
, and
A.
Zeltser
,
Appl. Phys. Lett.
98
,
182503
(
2011
).
20.
A.
Houshang
,
E.
Iacocca
,
P.
Dürrenfeld
,
S.
Sani
,
J.
Akerman
, and
R.
Dumas
,
Nat. Nanotechnol.
11
,
280
(
2016
).
21.
M.
Romera
,
P.
Talatchian
,
S.
Tsunegi
,
F. A.
Araujo
,
V.
Cros
,
P.
Bortolotti
,
J.
Trastoy
,
K.
Yakushiji
,
A.
Fukushima
,
H.
Kubota
,
S.
Yuasa
, M. Ernoult,
D.
Vodenicarevic
, T. Hirtzlin,
N.
Locatelli
,
D.
Querlioz
, and
J.
Grollier
,
Nature
563
,
230
(
2018
).
22.
B.
Picinbono
,
IEEE Trans. Signal Process.
45
,
552
(
1997
).
23.
L.
Bianchini
,
S.
Cornelissen
,
J. V.
Kim
,
T.
Devolder
,
W.
Van Roy
,
L.
Lagae
, and
C.
Chappert
,
Appl. Phys. Lett.
97
,
032502
(
2010
).
24.
L.
Appeltant
,
M. C.
Soriano
,
G.
Van Der Sande
,
J.
Danckaert
,
S.
Massar
,
J.
Dambre
,
B.
Schrauwen
,
C. R.
Mirasso
, and
I.
Fischer
,
Nat. Commun.
2
,
468
(
2011
).
25.
Y.
Paquot
,
F.
Duport
,
A.
Smerieri
,
J.
Dambre
,
B.
Schrauwen
,
M.
Haelterman
, and
S.
Massar
,
Sci. Rep.
2
,
287
(
2012
).
26.
L.
Larger
,
A.
Baylón-Fuentes
,
R.
Martinenghi
,
V. S.
Udaltsov
,
Y. K.
Chembo
, and
M.
Jacquot
,
Phys. Rev. X
7
,
011015
(
2017
).
27.
W.
Rippard
,
M.
Pufall
, and
A.
Kos
,
Appl. Phys. Lett.
103
,
182403
(
2013
).
28.
V. E.
Demidov
,
S.
Urazhdin
,
A.
Zholud
,
A. V.
Sadovnikov
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
105
,
172410
(
2014
).
29.
A. A.
Awad
,
P.
Dürrenfeld
,
A.
Houshang
,
M.
Dvornik
,
E.
Iacocca
,
R. K.
Dumas
, and
J.
Åkerman
,
Nat. Phys.
13
,
292
(
2017
).
30.
M.
Zahedinejad
,
H.
Mazraati
,
H.
Fulara
,
J.
Yue
,
S.
Jiang
,
A. A.
Awad
, and
J.
Åkerman
,
Appl. Phys. Lett.
112
,
132404
(
2018
).
You do not currently have access to this content.