We present a laser-actuated adaptive optical diaphragm that is capable of aligning the disturbance of the coaxiality of the optical signal and the plane of aperture. The diaphragm consists of two layers of immiscible liquids, where the bottom layer absorbs a pumping laser beam and transmits an optical signal, while the upper layer transmits the pumping laser beam and stops the optical signal. The operating principle is based on creating the circular thermocapillary rupture of the upper layer by Marangoni forces induced by heating with the pumping laser beam. The thermocapillary rupture serves as an aperture of the diaphragm. The aperture diameter at a fixed power of the laser beam depends on the upper layer thickness and reaches diameters up to two times larger in comparison with diaphragms operating on electrowetting and dielectrophoresis. The aperture tuning ratio is 100%. By shifting the pumping laser beam in the plane of the diaphragm, the aperture can be displaced for a distance up to a few of its radii.

1.
P.
Minzioni
,
R.
Osellame
,
C.
Sada
,
S.
Zhao
,
F. G.
Omenetto
,
K. B.
Gylfason
,
T.
Haralsson
,
Y.
Zhang
,
A.
Ozcan
, and
A.
Wax
,
J. Opt.
19
(
9
),
093003
(
2017
).
2.
B. F.
Grewe
,
F. F.
Voigt
,
M.
van't Hoff
, and
F.
Helmchen
,
Biomed. Opt. Express
2
(
7
),
2035
(
2011
).
3.
M.
Duocastella
,
B.
Sun
, and
C. B.
Arnold
,
J. Biomed. Opt.
17
(
5
),
050505
(
2012
).
4.
C. L.
Lee
,
H.-J.
Chang
,
Y.-W.
You
,
G.-H.
Chen
,
J.-M.
Hsu
, and
J.-S.
Horng
,
IEEE Photonics Technol. Lett.
26
(
8
),
749
752
(
2014
).
5.
P.
Mach
,
T.
Krupenkin
,
S.
Yang
, and
J. A.
Rogers
,
Appl. Phys. Lett.
81
(
2
),
202
204
(
2002
).
6.
H.
Yu
,
G.
Zhou
,
F. S.
Chau
, and
F.
Lee
,
Opt. Lett.
33
(
6
),
548
550
(
2008
).
7.
L.
Li
,
C.
Liu
,
H.
Ren
, and
Q.-H.
Wang
,
Opt. Lett.
38
(
13
),
2336
2338
(
2013
).
8.
M.
Xu
,
H.
Ren
, and
Y.-H.
Lin
,
Opt. Lett.
40
(
5
),
831
834
(
2015
).
9.
C. C.
Yu
,
J. R.
Ho
, and
J. W.
Cheng
,
Opt. Eng.
53
(
5
),
057106
(
2014
).
10.
J.-H.
Chang
,
K.-D.
Jung
,
E.
Lee
,
M.
Choi
,
S.
Lee
, and
W.
Kim
,
Opt. Lett.
38
(
15
),
2919
2922
(
2013
).
11.
S.
Schuhladen
,
K.
Banerjee
,
M.
Stürmer
,
P.
Müller
,
U.
Wallrabe
, and
H.
Zappe
,
Light: Sci. Appl.
5
,
e16005
(
2016
).
12.
P.
Müller
,
R.
Feuerstein
, and
H.
Zappe
,
J. Microelectromech. Syst.
21
(
5
),
1156
1164
(
2012
).
13.
H.
Ren
and
S.-T.
Wu
,
Opt. Lett.
35
,
3826
3828
(
2010
).
14.
G. C.
Tsai
and
J. A.
Yeh
,
Opt. Lett.
35
(
14
),
2484
2486
(
2010
).
15.
T.
Deutschmann
,
C.
Kortz
,
L.
Walder
, and
E.
Oesterschulze
,
Opt. Exp.
23
(
24
),
31544
33149
(
2015
).
16.
T.
Morris
,
M. R.
Ty Tan
,
S.-Y.
Wang
,
R. S.
Williams
,
D.
Stewart
, and
M.
Fiorentino
, “
Dynamical optical signal tracking a detector array a free space optical communication system
,” U.S. patent 8,009,991 B2 (30 August
2011
).
17.
G.
Da Costa
and
J.
Calatroni
,
Appl. Opt.
18
(
2
),
233
235
(
1979
).
18.
B. A.
Bezuglyi
,
N. A.
Ivanova
, and
A. Y.
Zueva
,
J. Appl. Mech. Tech. Phys.
42
(
3
),
493
496
(
2001
).
19.
A. Y.
Zykov
and
N. A.
Ivanova
,
Appl. Phys. B
123
,
235
(
2017
).
20.
J. P.
Burelbach
,
S. G.
Bankoff
, and
S. H.
Davis
,
Phys. Fluids A
2
(
3
),
322
333
(
1990
).
21.
H. M. J. M.
Wedershoven
,
C. W. J.
Berendsen
,
J. C. H.
Zeegers
, and
A. A.
Darhuber
,
Appl. Phys. Lett.
104
,
054101
(
2014
).
22.
E. D.
Éidel’man
,
Tech. Phys.
43
(11),
1275
1279
(
1998
).
23.
M.
Backholm
,
M.
Benzaquen
,
T.
Salez
,
E.
Raphaël
, and
K.
Dalnoki-Veress
,
Soft Matter
10
,
2550
2558
(
2014
).
24.
B. A.
Bezuglyi
and
N. A.
Ivanova
,
Tech. Phys. Lett.
28
(
10
),
828
829
(
2002
).
25.
B. A.
Bezuglyi
and
N. A.
Ivanova
,
Fluid Dyn.
42
(
1
),
91
96
(
2007
).

Supplementary Material

You do not currently have access to this content.