Suppression of backscattered electromagnetic waves by carefully designed structures is highly demanded in a range of applications, some of which are radar invisibility, antenna isolation, and many others. Salisbury screens, composed of a mirror with an additional layer on top, are traditionally used for these purposes. Here, we report on the design and experimental demonstration of a reciprocal screen, which demonstrates asymmetric reflection properties when illuminated from opposite directions. The structure utilizes near-field magneto-electric coupling between subwavelength split ring resonators and wires, forming a metasurface. While the reciprocal structure demonstrates perfect symmetry in transmission, strong backscattered asymmetry is shown to be controllable by carefully choosing the Ohmic losses, which are implemented with lumped resistors soldered into the resonators. Depending on the load, the meta-screen demonstrates switching properties that vary between fully symmetric and completely asymmetric reflection between the forward and backward directions of incident illumination. The frequency selective surface acts as a Huygens element when illuminated from one side and as a perfect mirror when illuminated from the other. The ability to tailor the asymmetric reflectance of electromagnetic metasurfaces by controlling Ohmic losses allows employing additional degrees of freedom in designing of radomes and other antenna devices. Furthermore, the concept could be extended to optical frequencies, where resistive losses can be controlled via direct carrier injection into semiconductor devices.

1.
W.
Bahret
and
C. J.
Sletten
, “
A look into the future of radar scattering
,”
Proc. IEEE
53
(
8
),
786
795
(
1965
).
2.
S. A.
Tretyakov
and
S. I.
Maslovski
, “
Thin absorbing structure for all incidence angles based on the use of a high-impedance surface
,”
Microwave Opt. Technol. Lett.
38
(
3
),
175
178
(
2003
).
3.
F. C.
Seman
,
R.
Cahill
, and
V. F.
Fusco
, “
Low profile Salisbury screen radar absorber with high impedance ground plane
,”
Electron. Lett.
45
(
1
),
10
12
(
2009
).
4.
W.
Li
,
M.
Chen
,
Z.
Zeng
,
H.
Jin
, and
Y.
Pei
, “
Broadband composite radar absorbing structures with resistive frequency selective surface: Optimal design, manufacturing and characterization
,”
Compos. Sci. Technol.
145
,
10
14
(
2017
).
5.
B. M.
Wells
,
C. M.
Roberts
, and
V. A.
Podolskiy
, “
Metamaterials-based Salisbury screens with reduced angular sensitivity
,”
Appl. Phys. Lett.
105
(
16
),
161105
(
2014
).
6.
E. F.
Knott
,
J. F.
Shaeffer
, and
M. T.
Tuley
,
Radar Cross Section
, 2nd ed. (
Scitech Publishing
,
2004
).
7.
B.
Chambers
and
A.
Tennant
, “
Active Dallenbach radar absorber
,” in
AP-S International Symposium (Digest) (IEEE Antennas and Propagation Society)
, IEEE (
2006
), pp.
381
384
.
8.
L.
Ke
,
Z.
Xin
,
H.
Xinyu
, and
Z.
Peng
, “
Analysis and design of multilayer Jaumann absorbers
,” in
IEEE International Conference on Microwave Technology and Computational Electromagnetics (ICMTCE)
(
2011
), pp.
81
84
.
9.
B. A.
Munk
,
Frequency Selective Surfaces
(
John Wiley & Sons, Inc
.,
Hoboken, NJ, USA
,
2000
).
10.
G.
Lavigne
,
K.
Achouri
,
V. S.
Asadchy
,
S. A.
Tretyakov
, and
C.
Caloz
, “
Susceptibility derivation and experimental demonstration of refracting metasurfaces without spurious diffraction
,”
IEEE Trans. Antennas Propag.
66
(
3
),
1321
1330
(
2018
).
11.
N.
Shitrit
,
I.
Yulevich
,
E.
Maguid
,
D.
Ozeri
,
D.
Veksler
,
V.
Kleiner
, and
E.
Hasman
, “
Spin-optical metamaterial route to spin-controlled photonics
,”
Science
340
(
6133
),
724
726
(
2013
).
12.
N.
Yu
and
F.
Capasso
, “
Flat optics with designer metasurfaces
,”
Nat. Mater.
13
(
2
),
139
150
(
2014
).
13.
A. V.
Kildishev
,
A.
Boltasseva
, and
V. M.
Shalaev
, “
Planar photonics with metasurfaces
,”
Science
339
(
6125
),
1232009
(
2013
).
14.
A. I.
Kuznetsov
,
A. E.
Miroshnichenko
,
M. L.
Brongersma
,
Y. S.
Kivshar
, and
B.
Luk'yanchuk
, “
Optically resonant dielectric nanostructures
,”
Science
354
(
6314
),
aag2472
(
2016
).
15.
S. B.
Glybovski
,
S. A.
Tretyakov
,
P. A.
Belov
,
Y. S.
Kivshar
, and
C. R.
Simovski
, “
Metasurfaces: From microwaves to visible
,”
Phys. Rep.
634
,
1
72
(
2016
).
16.
C. L.
Holloway
,
M. A.
Mohamed
,
E. F.
Kuester
, and
A.
Dienstfrey
, “
Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles
,”
IEEE Trans. Electromagn. Compat.
47
(
4
),
853
865
(
2005
).
17.
K.
Achouri
,
B. A.
Khan
,
S.
Gupta
,
G.
Lavigne
,
M. A.
Salem
, and
C.
Caloz
, “
Synthesis of electromagnetic metasurfaces: Principles and illustrations
,”
EPJ Appl. Metamater.
2
,
12
(
2015
).
18.
A. A.
Elsakka
,
V. S.
Asadchy
,
I. A.
Faniayeu
,
S. N.
Tcvetkova
, and
S. A.
Tretyakov
, “
Multifunctional cascaded metamaterials: Integrated transmitarrays
,”
IEEE Trans. Antennas Propag.
64
(
10
),
4266
4276
(
2016
).
19.
H.
Markovich
,
D.
Filonov
,
I.
Shishkin
, and
P.
Ginzburg
, “
Bifocal Fresnel lens based on the polarization-sensitive metasurface
,”
IEEE Trans. Antennas Propag.
66
(
5
),
2650
2654
(
2018
).
20.
Y.
Ra'di
,
V. S.
Asadchy
, and
S. A.
Tretyakov
, “
Total absorption of electromagnetic waves in ultimately thin layers
,”
IEEE Trans. Antennas Propag.
61
(
9
),
4606
4614
(
2013
).
21.
Y.
Ra'di
,
C. R.
Simovski
, and
S. A.
Tretyakov
, “
Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations
,”
Phys. Rev. Appl.
3
(
3
),
37001
(
2015
).
22.
Z.
Zhou
,
K.
Chen
,
J.
Zhao
,
P.
Chen
,
T.
Jiang
,
B.
Zhu
,
Y.
Feng
, and
Y.
Li
, “
Metasurface Salisbury screen: Achieving ultra-wideband microwave absorption
,”
Opt. Express
25
(
24
),
30241
30252
(
2017
).
23.
A. M.
Mahmoud
,
A. R.
Davoyan
, and
N.
Engheta
, “
All-passive nonreciprocal metastructure
,”
Nat. Commun.
6
,
8359
(
2015
).
24.
C.
Pfeiffer
and
A.
Grbic
, “
Metamaterial Huygens' surfaces: Tailoring wave fronts with reflectionless sheets
,”
Phys. Rev. Lett.
110
(
19
),
197401
(
2013
).
25.
A.
Epstein
and
G. V.
Eleftheriades
, “
Huygens' metasurfaces via the equivalence principle: Design and applications
,”
J. Opt. Soc. Am. B
33
(
2
),
A31
(
2016
).
26.
V.
Kozlov
,
D.
Filonov
,
A. S.
Shalin
,
B. Z.
Steinberg
, and
P.
Ginzburg
, “
Asymmetric backscattering from the hybrid magneto-electric meta particle
,”
Appl. Phys. Lett.
109
(
20
),
203503
(
2016
).
27.
D.
Filonov
,
B. Z.
Steinberg
, and
P.
Ginzburg
, “
Asymmetric micro-Doppler frequency comb generation via magnetoelectric coupling
,”
Phys. Rev. B
95
(
23
),
235139
(
2017
).
28.
I.
Shishkin
,
D.
Baranov
,
A.
Slobozhanyuk
,
D.
Filonov
,
S.
Lukashenko
,
A.
Samusev
, and
P.
Belov
, “
Microwave platform as a valuable tool for characterization of nanophotonic devices
,”
Sci. Rep.
6
(
1
),
35516
(
2016
).
29.
D.
Filonov
,
Y.
Kramer
,
V.
Kozlov
,
B. A.
Malomed
, and
P.
Ginzburg
, “
Resonant meta-atoms with nonlinearities on demand
,”
Appl. Phys. Lett.
109
(
11
),
111904
(
2016
).
30.
D. S.
Filonov
,
A. S.
Shalin
,
I.
Iorsh
,
P. A.
Belov
, and
P.
Ginzburg
, “
Controlling electromagnetic scattering with wire metamaterial resonators
,”
J. Opt. Soc. Am. A
33
(
10
),
1910
(
2016
).
31.
P. V.
Kapitanova
,
P.
Ginzburg
,
F. J.
Rodríguez-Fortuño
,
D. S.
Filonov
,
P. M.
Voroshilov
,
P. A.
Belov
,
A. N.
Poddubny
,
Y. S.
Kivshar
,
G. A.
Wurtz
, and
A. V.
Zayats
, “
Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes
,”
Nat. Commun.
5
,
3226
(
2014
).
32.
A. V.
Krasavin
,
P.
Segovia
,
R.
Dubrovka
,
N.
Olivier
,
G. A.
Wurtz
,
P.
Ginzburg
, and
A. V.
Zayats
, “
Generalization of the optical theorem: Experimental proof for radially polarized beams
,”
Light: Sci. Appl.
7
(
1
),
36
(
2018
).
You do not currently have access to this content.