The phase angle of a fractional-order capacitor's (FOC) impedance has a constant value between 90° and 0°. Maintaining this value over a broad frequency band is of utmost importance since it increases the applicability of the electrical circuit that employs the fractional-order capacitor (FOC). In this work, a molybdenum disulfide (MoS2)-ferroelectric polymer composite is used to design/fabricate an FOC. The resulting FOC's bandwidth of operation, which is defined as the frequency band where the variation in the phase angle is no more than ±4°, is five decades between 100 Hz and 10 MHz, a 3 decades improvement over the best reported state of the art. The value of the constant phase angle can be tuned from 80° to 58° by changing the type of the ferroelectric polymer in the composite and the volume ratio of MoS2. The results presented in this work demonstrate the potential of the FOCs fabricated using MoS2-ferroelectric polymer composites in robust and accurate realization of various electrical systems.

1.
D. A.
John
,
S.
Banarjee
,
G. W.
Bohanan
, and
K.
Biswas
,
Appl. Phys. Lett.
110
(
16
),
163504
(
2017
).
2.
3.
A. M.
Elshurafa
,
M. N.
Almadhoun
,
K. N.
Salama
, and
H. N.
Alshareef
,
Appl. Phys. Lett.
102
(
23
),
232901
(
2013
).
4.
A. S.
Elwakil
,
IEEE Circuits Syst. Mag.
10
(
4
),
40
(
2010
).
5.
A.
Agambayev
,
S.
Patole
,
M.
Farhat
,
A.
Elwakil
,
H.
Bagci
, and
K. N.
Salama
,
ChemElectroChem
4
(
11
),
2807
(
2017
).
6.
M. S.
Krishna
,
S.
Das
,
K.
Biswas
, and
B.
Goswami
,
IEEE Trans. Electron Devices
58
(
11
),
4067
(
2011
).
7.
G. W.
Bohannan
,
J. Vib. Control
14
(
9-10
),
1487
(
2008
).
8.
A.
Potapov
,
P.
Ushakov
, and
A. K.
Gil'mutdinov
,
Phys. Wave Phenom.
18
(
2
),
119
(
2010
).
9.
A. K.
Gil'mutdinov
,
P. A.
Ushakov
, and
R.
El-Khazali
,
Analog Integrated Circuits Signal Process
(
Springer
,
Cham
,
2017
), p. 93.
10.
A.
Kartci
,
A.
Agambayev
,
N.
Herencsar
, and
K. N.
Salama
,
IEEE Access
6
,
10933
(
2018
).
11.
T. C.
Haba
,
G.
Ablart
,
T.
Camps
, and
F.
Olivie
,
Chaos, Solitons Fractals
24
(
2
),
479
(
2005
).
12.
A. G.
Radwan
,
A. M.
Soliman
, and
A. S.
Elwakil
,
J. Circuits Syst. Comput.
17
(
1
),
55
(
2008
).
13.
A.
Adhikary
,
S.
Sen
, and
K.
Biswas
,
IEEE Trans. Circuits Syst. I
63
(
8
),
1142
(
2016
).
14.
A.
Elwakil
,
A.
Agambayev
,
A.
Allagui
, and
K. N.
Salama
,
Chaos, Solitons Fractals
96
,
160
(
2017
).
15.
L. A.
Said
,
A. G.
Radwan
,
A. H.
Madian
, and
A. M.
Soliman
,
J. Circuits Syst. Comput.
26
(
10
),
1750160
(
2017
).
16.
N. A. Z.
R-Smith
,
A.
Kartci
, and
L.
Brančík
,
J. Circuits Syst. Comput.
27
(
11
),
1850172
(
2018
).
17.
T. J.
Freeborn
,
B.
Maundy
, and
A. S.
Elwakil
,
Mater. Renewable Sustainable Energy
4
(
3
),
9
(
2015
).
18.
A.
Allagui
,
A. S.
Elwakil
,
B. J.
Maundy
, and
T. J.
Freeborn
,
ChemElectroChem
3
(
9
),
1429
(
2016
).
19.
T. J.
Freeborn
,
B.
Maundy
, and
A. S.
Elwakil
,
IEEE Trans. Emerging Sel. Top. Circuits Syst.
3
(
3
),
367
(
2013
).
20.
L.
Hu
,
Y.
Ren
,
H.
Yang
, and
Q.
Xu
,
ACS Appl. Mater. Interfaces
6
(
16
),
14644
(
2014
).
21.
B.
Put
,
P. M.
Vereecken
,
J.
Meersschaut
,
A.
Sepúlveda
, and
A.
Stesmans
,
ACS Appl. Mater. Interfaces
8
(
11
),
7060
(
2016
).
22.
A.
Shamim
,
A. G.
Radwan
, and
K. N.
Salama
,
IEEE Microwave Wireless Compon. Lett.
21
(
3
),
117
(
2011
).
23.
M. C.
Tripathy
,
D.
Mondal
,
K.
Biswas
, and
S.
Sen
,
Int. J. Circuit Theory Appl.
43
(
6
),
776
(
2015
).
24.
I.
Podlubny
,
I.
Petráš
,
B. M.
Vinagre
,
P.
O'leary
, and
L.
Dorčák
,
Nonlinear Dyn.
29
(
1
),
281
(
2002
).
25.
V.
Uchaikin
,
R.
Sibatov
, and
D.
Uchaikin
,
Phys. Scr.
2009
(
T136
),
014002
.
26.
R. R.
Nigmatullin
,
Phys. Status Solidi B
124
(
1
),
389
(
1984
).
27.
G.
Carlson
and
C.
Halijak
,
IEEE Trans. Circuits Syst.
11
(
2
),
210
(
1964
).
28.
J.
Valsa
and
J.
Vlach
,
Int. J. Circuit Theory Appl.
41
(
1
),
59
(
2013
).
29.
A.
Oustaloup
,
F.
Levron
,
B.
Mathieu
, and
F. M.
Nanot
,
IEEE Trans. Circuits Syst. I
47
(
1
),
25
(
2000
).
30.
A.
Agambayev
,
K. H.
Rajab
,
A. H.
Hassan
,
M.
Farhat
,
H.
Bagci
, and
K. N.
Salama
,
J. Phys. D: Appl. Phys.
51
(
6
),
065602
(
2018
).
31.
K.
Moaddy
,
A. G.
Radwan
,
K. N.
Salama
,
S.
Momani
, and
I.
Hashim
,
Comput. Math. Appl.
64
(
10
),
3329
(
2012
).
32.
Y. F.
Pu
,
Z.
Yi
, and
J. L.
Zhou
,
Int. J. Neural Syst.
27
(
4
),
1750003
(
2017
).
33.
Q. H.
Wang
,
K.
Kalantar-Zadeh
,
A.
Kis
,
J. N.
Coleman
, and
M. S.
Strano
,
Nat. Nanotechnol.
7
(
11
),
699
(
2012
).
34.
F.
Purcell-Milton
,
R.
McKenna
,
L.
Brennan
,
C. P.
Cullen
,
L.
Guillemeney
,
N.
Tepliakov
,
A. S.
Baimuratov
,
I. D.
Rukhlenko
,
T. S.
Perova
, and
G. S.
Duesberg
,
ACS Nano
12
(
2
),
954
(
2018
).
35.
J. N.
Coleman
,
M.
Lotya
,
A.
O'Neill
,
S. D.
Bergin
,
P. J.
King
,
U.
Khan
,
K.
Young
,
A.
Gaucher
,
S.
De
,
R. J.
Smith
, and
I. V.
Shvets
,
Science
331
(
6017
),
568
(
2011
).
36.
W.
Lv
,
H.
Wang
,
L.
Jia
,
X.
Tang
,
C.
Lin
,
L.
Yuwen
,
L.
Wang
,
W.
Huang
, and
R.
Chen
,
ACS Appl. Mater. Interfaces
10
(
7
),
6552
(
2018
).
37.
M.
Zhang
,
R. C.
Howe
,
R. I.
Woodward
,
E. J.
Kelleher
,
F.
Torrisi
,
G.
Hu
,
S. V.
Popov
,
J. R.
Taylor
, and
T.
Hasan
,
Nano Res.
8
(
5
),
1522
(
2015
).
38.
C.
Wu
,
T. W.
Kim
,
J. H.
Park
,
H.
An
,
J.
Shao
,
X.
Chen
, and
Z. L.
Wang
,
ACS Nano
11
(
8
),
8356
(
2017
).
39.
B.
Li
,
S.
Zu
,
J.
Zhou
,
Q.
Jiang
,
B.
Du
,
H.
Shan
,
Y.
Luo
,
Z.
Liu
,
X.
Zhu
, and
Z.
Fang
,
ACS Nano
11
(
10
),
9720
(
2017
).
40.
S.
Lee
,
Y. K.
Kim
,
J.-Y.
Hong
, and
J.
Jang
,
ACS Appl. Mater. Interfaces
8
(
36
),
24221
(
2016
).
41.
G.
Zhang
,
D.
Brannum
,
D.
Dong
,
L.
Tang
,
E.
Allahyarov
,
S.
Tang
,
K.
Kodweis
,
J. L.
Lee
, and
L.
Zhu
,
Chem. Mater.
28
(
13
),
4646
(
2016
).
42.
L. A.
Fredin
,
Z.
Li
,
M. T.
Lanagan
,
M. A.
Ratner
, and
T. J.
Marks
,
ACS Nano
7
(
1
),
396
(
2013
).
43.
C. R.
Ryder
,
J. D.
Wood
,
S. A.
Wells
, and
M. C.
Hersam
,
ACS Nano
10
(
4
),
3900
(
2016
).
44.
R.
Nigmatullin
and
Y. E.
Ryabov
,
Phys. Solid State
39
(
1
),
87
(
1997
).
45.
K.
Zhou
,
S.
Jiang
,
C.
Bao
,
L.
Song
,
B.
Wang
,
G.
Tang
,
Y.
Hu
, and
Z.
Gui
,
RSC Adv.
2
(
31
),
11695
(
2012
).
46.
A.
Agambayev
,
S.
Patole
,
H.
Bagci
, and
K. N.
Salama
,
AIP Adv.
7
(
9
),
095202
(
2017
).
47.
G.
Tsirimokou
,
C.
Psychalinos
, and
A. S.
Elwakil
,
Analog Integr. Circuits Signal Process.
85
(
3
),
413
(
2015
).
48.
G.
Tsirimokou
,
A.
Kartci
,
J.
Koton
,
N.
Herencsar
, and
C.
Psychalinos
,
J. Circuits Syst. Comput.
27
(
11
),
1850170
(
2018
).
49.
G.
Tsirimokou
,
C.
Psychalinos
,
A. S.
Elwakil
, and
K. N.
Salama
,
IEEE Trans. Circuits Syst. II
65
(
2
),
166
(
2018
).

Supplementary Material

You do not currently have access to this content.